CROCODILES

Proceedings of the 11th Working Meeting of the Crocodile Specialist Group
of the Species Survival Commission of the IUCN - The World Conservation Union
convened at
Victoria Falls, Zimbabwe, 2 to 7 August 1992

Volume 1
(Unedited and Unreviewed)

IUCN - The World Conservation Union
Avenue du Mont Blanc, CH-1196, Gland, Switzerland
1992
Literature citations should be read as follows:

For individual articles:


For the volume:


(c) 1992 IUCN International Union for the Conservation of Nature and Natural Resources

Reproduction of this publication for educational and other non-commercial purposes is authorised without permission from the copyright holder, provided the source is cited and the copyright holder receives a copy of the reproduced material.

Reproduction for resale or other commercial purposes is prohibited without prior written permission of the copyright holder.

ISBN 2-8317-0132-5

Published by: IUCN/SSC Crocodile Specialist Group
FOREWORD

The two volumes of this PROCEEDINGS are a record of the presentations and discussions that occurred at the 11th Working Meeting of the Crocodile Specialist Group in Victoria Falls, Zimbabwe, 3-7th August 1992. The manuscripts are unreviewed and unedited. The CSG PROCEEDINGS, by definition, are records of what occurred at the meeting. They are not tomes filled with articles that were reviewed, edited, revised and polished subsequent to the meeting. Apart from preparing a table of contents, cut-and-pasting captions to figures, compiling the articles alphabetically by author, and numbering the pages consecutively, the papers are published just the way they were submitted. For this reason, they appear in a variety of formats and typefaces. Ian Games was the managing editor.

The opinions expressed herein are those of the individual authors and are not the opinions of IUCN - The World Conservation Union, or its Species Survival Commission.

IUCN - The World Conservation Union was founded in 1948, and has its headquarters in Gland, Switzerland; it is an independent international body whose membership comprises states (irrespective of their political and social systems), government departments, and private institutions, as well as international organizations. It represents those who are concerned about man's modification of the natural environment through the rapidity of urban and industrial development and the excessive exploitation of the earth's natural resources, upon which rest the foundations of his survival. IUCN's main purpose is to promote or support action which will ensure the perpetuation of wild nature and natural resources on a world-wide basis, not only for their intrinsic cultural or scientific values but also for the long-term economic and social welfare of mankind.

This objective can be achieved through active conservation programmes for the wise use of natural resources in areas where the flora and fauna are of particular importance and where the landscape is especially beautiful or striking, or of historical, cultural, or scientific significance. IUCN believes that its aims can be achieved most effectively by international effort in cooperation with other international agencies, such as UNESCO, FAO, and UNEP, and international organisations, such as World Wide Fund for Nature (WWF).

The mission of IUCN's Species Survival Commission (SSC) is to prevent the extinction of species, subspecies, and discrete populations of fauna and flora, thereby maintaining the genetic diversity of the living species of the planet. To carry out its mission, the SSC relies on a network of over 2,500 volunteer professionals working through more than 90 Specialist Groups and a large number of affiliate organizations, regional representatives, and consultants, scattered through nearly every country of the world.
TABLE OF CONTENTS

Volume I

Opening Comments from the Chairman of the Crocodile Farmers Association of Zimbabwe. 1

Presentation from the Minister of Environment and Tourism, Zimbabwe. 3

Abercrombie C.L.: Fitting curves to crocodilian age-size data: Some hesitant recommendations. 5

Asanza E: Population dynamics, ecology and conservation of the black caiman, Melanosuchus niger in Ecuadorean Amazonia. 22

Avendano, G, Baez, L & Michelangeli, L. Effects of diets complemented with Sodium L-Thyroxine, white corn flower and a complement of vitamins and essential amino acids in Caiman crocodiles growth. 31

Behra O, & Ramandimbison: The involvement of rural communities in the crocodile ranching programme in Madagascar. 43

Brisbin I L, Benner J M, Brandt L A, Kennamer R A, & T M Murphy: Long-term population studies of American alligators inhabiting a reservoir: Initial responses to water level drawdown. 53

Coutinho, M E, Mourao, G M, Campos, Z M da S, Pinheiro, M S & Abercrombie, C L: Growth rate of caiman (Caiman crocodilus yacare) in the Pantanal wetland, Brazil. 77

Craig G C: A population model for the nile crocodile with an analysis of sustainable harvesting strategies. 78

Crews D, Tousignant A, Wibbels T, & J P Ross: Hormonal determination of gender and behaviour in reptiles. 82

Elsey, R M, Joanen, T & McNease, L: Growth rates and body condition factors for alligators in coastal Louisiana wetlands: A comparison of wild and farm-released juveniles. 95
Elsey, R M, McNease, L & Joanen, T: Feeding habits of juvenile alligators on Marsh Island Wildlife Refuge: A comparison of wild and farm-released alligators

Ferguson, M W J, Noble, R C & McCartney R: Lipid and fatty acid compositional differences between eggs of wild and captive breeding alligators (*Alligator mississippiensis*): An association with reduced hatchability.

Fergusson R A: A radiotelemetry and mark recapture experiment to assess the survival of juvenile crocodiles released from farms into the wild in Zimbabwe.

Foggin C M: Disease trends on crocodile farms in Zimbabwe.

Games I: The feeding ecology of two Nile crocodile populations in the Zambezi valley - a project summary.

Games I & E Severre: The status and distribution of crocodiles in Tanzania.

Haire, D B: Standardized grading and worldwide tagging: implications for trade.

Hall P M, & T Hailu: Crocodile skin industry in Ethiopia: Status and conservation prognosis.


Hines T & K Rice: A report on an initial survey effort to assess the status of the black caiman *melanosuchus niger* in the Amazonian region of Ecuador.


Huchzermeyer F W & Mary-Lou Penrith: Crocodilian Riddles.

Hunt R H & J Tamarack: Cox lagoon: A preserve for *Crocodylus moreletii* in Belize?

Hutton J M: Humane killing of crocodilians.

Hutton J M & O Behra: Conservation strategy for crocodilians in Africa.
Jelden D: Effects of new international controls on the crocodilian skin industry - an update of recent CITES recommendations. 201

Joanen T & L McNease: Sequence of nesting, clutch size, and hatch rate for alligators in southwest Louisiana. 207

Kar, S K: Conservation, research and management of estuarine crocodiles Crocodylus porosus Schlieper in Bhitarkanika wildlife sanctuary: Orissa, India during the last 17 years. 222

Kelly H: The reproductive performance of captive bred Nile crocodiles. 243

Larriera A: The experimental breeding station of Caiman latirostris at Santa Fe City, Argentina (1991/92). 250

Larriera A, del Barco D, Imhof A, & C von Finck: Environmental variables and its incidence on Caiman latirostris counts. 256

Larriera A & C Inta-magic: A program of monitoring and recovering of wild populations of caimans in Argentina with the aim of management the second year. 261

Larsen R E, Verdaide L M, Meirelles C F, & A Lavoretti: Broad-nosed caiman (Caiman latirostris) semen collection, evaluation, and maintenance in diluents. 270


Lello J V: Predicting belly width of Crocodylus niloticus from total length and/or total mass. 285


Marais J, & G A Smith: Commercial crocodile production - a case study. 294

Messel H, & F W King: Survey of the crocodile populations of the republic of Palau, Caroline Islands, Pacific Ocean, 8-24 June 1991: A report to the Government of the Republic of Palau Koror, Palau. 302
CFAZ CHAIRMAN'S OPENING COMMENTS FOR THE 11th WORKING MEETING AT THE IUCN/SSC CROCODILE SPECIALIST GROUP

It gives me great pleasure to welcome you all here today, and my first task must be to thank those of you who have travelled around the world to be here. We have over 150 delegates from 27 countries outside Zimbabwe, which is good considering the tough economic times we live in.

My next task must be to thank our Minister of Natural Resources and Tourism for finding the time in his busy schedule to be with us to participate in the formal opening. You will be hearing from him in a moment.

We are also pleased to have with us the Director and other officials from the Department of National Parks, with whom we have a very close relationship, the Chairman of the Campfire Association, the members of which provide much of our crocodile egg resource, the Regional Director of the IUCN, the Mayor of Victoria Falls and, of course, our local Chief who will be guaranteeing the success of the meeting by giving us a traditional African blessing.

Those of you who were here 10 years ago will know that this is the second CSG meeting in the Victoria Falls that I have hosted as Chairman of the Zimbabwe Farmers and I sincerely hope that this meeting is as successful as the last and that our hospitality comes up to the same standard.

We have organised a very full itinerary both in the conference rooms and on the social side and I hope that you will all take full advantage of our organisation and facilities.

If all goes to plan it promises to be a very constructive, rewarding and enjoyable week.

If there is anything we can do for you, or if you need assistance, please do not hesitate to contact the Secretariat who will see what they can do.

On the crocodile side, we have made immense progress since the last CSG meeting was held in Zimbabwe. We certainly do not have all the answers, but we know a great deal more about Nile crocodile biology, conservation and management.

Over 85 scientific papers on crocodiles have originated in Zimbabwe, many of these since 1982 and over this short period our industry has grown from an output of 4000 skins a year to 30000, allowing us to invest much more heavily in research. Last year over 30% of our Associations budget went into research, much of it in supporting Government's programme.
At the September 1982 meeting our major concern was to have the Zimbabwe crocodile population moved to Appendix II in order that we might trade freely in our ranch produced skins.

Everyone else's concern was whether our population was still endangered or not. At the time our slogan was "Crocodile utilisation is conservation" and to further our cause we had stickers made for the occasion. We had them in Green too.

We are very pleased to be able to tell you today that our crocodiles are well and truly conserved and are thriving both on ranches and in the wild. In fact, they have never been so happy.

They certainly get lots of attention. From the production side we have research projects on nutrition, incubation and veterinary subjects. The wild crocs have been chased all over Lake Kariba and elsewhere and their privacy invaded so that we know all about their most intimate habits including the way they progress when returned to the wild.

The Zimbabwe programme has progressed to the extent that 58000 eggs from the wild are collected each year and we pay over $60000 for those eggs that come out of communal lands under CAMPFIRE. The intention is that the appreciation of the monetary value of crocodiles will make people more tolerant of their more unpleasant habits.

We are proud of our conservation role in Zimbabwe and look upon ourselves very much as an agent of the Department of National Parks in this country. We have common aims and we are well aware of the need for us to do our part to help Zimbabwe maintain a clean record as far as CITES is concerned.

I could go on telling you how successful the Zimbabwe programme is, but I think I have just about spoken enough. You should all by now know who I am and please do not hesitate to come and see me directly if anything is not to your liking.

However, before I finish I would like to comment on the situation in the United States which has tougher domestic legislation than CITES and which does not allow our African Skins to enter. This is a complete violation of human rights in that the whole US population is being denied high quality crocodile products being compelled to take tatty alligator rubbish instead. I think that this should be stopped!

Without further ado, I will ask the Minister, the Honorable Dr Herbert Murerwa to present to us his opening remarks.
Welcome to Zimbabwe. It gives me great pleasure to open this meeting of the Crocodile Specialist Group with a few comments which I hope prove to be appropriate and contribute to the spirit of your meeting.

From the perspective of the early 1970's, when it seemed that hunting would never be controlled, crocodile conservation must have looked very depressing and it is no wonder that all the species were placed on the CITES Appendices when the Convention was concluded.

Since then, of course, it has been recognised that several of the most restrictive listings, on Appendix I, were not appropriate and in addition the status of many species has improved. As a result, crocodiles have been on the agenda at CITES for many years and over the last 20 years, we have come to expect the crocodiles to be at the cutting edge of innovative conservation, especially in the CITES context.

Before expanding on this, it is worth pointing out that the establishment of CITES clearly drew the battle lines between those whose answer to the abuse of a natural resource is prohibition, and those who believe that the answer to abuse is better management to give sustainable use. In Zimbabwe we subscribe to the latter view, especially since we strongly believe that sustainable use is a strong conservation tool in many circumstances.

It would seem that this principle is more readily accepted and demonstrated with crocodiles than with any other species and we are clearly not the only people who are trying to conserve crocodiles through their use. I am happy that so many people with similar experiences to those of Zimbabwe are here today - I can assure you that it is not often that I am asked to address an international audience which almost universally believes in the same conservation philosophy as Zimbabwe!

I would now like to move back to the issue of crocodiles as conservation pioneers.

Although CITES is often seen as a catch-all conservation treaty it only addresses trade as a factor affecting the conservation of species. Where habitat loss or other factors are causing the decline, as so often is the case, CITES cannot really help. Indeed, it is our experience that under these conditions CITES is often a definite hinderence.

Where a species is under pressure from habitat loss the intuitive reaction is to increase protection from exploitation by banning international trade.

However, where the issue is habitat loss the removal of value from the species also removes management options. Some lateral thinking and a great deal of experience lead us to believe that habitat loss can only be addressed by making it economically unattractive to convert wild lands to agriculture and settlement. In this, international
trade can play an important part and wildlife utilization and trade should never be stopped without very careful assessment of the conservation costs and benefits.

In line with this principle, we are proud that Zimbabwe was the first country to move its crocodile population to Appendix II under the ranching criteria. The last time the CSG met here, almost exactly 10 years ago, Zimbabwe was struggling to have its CITES listing for the Nile crocodile changed for its conservation benefit. Today we can see the results of this successful downlisting. Crocodiles, which eat a number of our people each year, are at least tolerated by the average Zimbabwean and in some circles of course they are highly prized - not just by the farmers, but also by poor rural people who now benefit economically from crocodiles.

It is of some satisfaction for me to be able to tell you that our farmers have just paid poor rural communities over $60,000 for crocodile eggs collected from areas in which the people have been given appropriate authority for their wildlife under our CAMPFIRE programme.

We have watched with interest as other countries have gone through the same process and as CITES has adapted to new circumstances and advances in crocodile management. Indeed, at every CITES meeting it always seems to be crocodiles for which new management strategies are being developed and for which CITES most readily adapts.

I suppose it is because they are not cuddly animals.

The Special Criteria or quota system was a great advance as far as we are concerned which helped many of our neighbours in Africa a great deal. We support the idea of Appendix II quotas, and of the strengthening of Appendix II in general. If Appendix II worked properly it could accommodate many of the species and populations which are on Appendix I. While some crocodile species are clearly endangered, we would always question the use of Appendix I and it is interesting to see CITES wrestling with the problem of the Phillipines crocodile and the Chinese Alligator which, though clearly endangered, will benefit from controlled trade from farms.

Finally, I have to say that we have a very high opinion of the CSG and the way it has supported pragmatic conservation and I hope that you intend to continue this process at this meeting.

I believe that during this week you will be having a number of workshops including one which is looking at the CITES resolutions which affect crocodiles.

CITES is peppered with crocodile resolutions and at the very least we would all benefit greatly from the consolidation of these. I think it would also be worth your while to consider abandoning some of the outdated CITES models, such as ranching, replacing these with a general system of quotas which allow mixed strategies.

Once again, welcome to Zimbabwe and good luck with your meeting.
Fitting Curves to Crocodilian Age-size Data: 
Some Hesitant Recommendations
by
C. L. Abercrombie, III
Wofford College
Spartanburg, SC 29303
USA

Introduction

While we are gathered together every two years, somebody usually gets up to tell us about crocodilian growth rates, and as he or she talks, most of us stay around to listen. Beyond mere politeness, there are at least three reasons for our forbearance. First, we believe that the relationship between crocodilian age and size is biologically interesting and directly relevant to most management strategies. Second, we understand that after you’ve caught a croc which is to be released, you must do something to justify the trouble, expense, and fun of the hunt. Measuring an animal’s size is "doing something," and if one can also establish an age for the varmint, so much the better. Third, as scientists most of us really like to measure things, to systematize our measurements, and to tell other scientists about what we have measured. In our work we concentrated on the "systematizing" part of the process, and to do so we have (1) evaluated the fit of three models to samples from a population of simulated crocs whose underlying growth pattern is known and (2) tried to determine how well several models perform inductively when we use them to generalize beyond samples from an actual crocodile population.

This paper is divided into six sections. In the first we explain how we created our population of simulated crocodilians and how we took samples from it. In the second section we describe the models which we fit to the samples. In the third section we evaluate the fit of the various models. Next, in section four, we describe another set of models and explain how we applied them to samples from a population of Crocodylus acutus. In the fifth section, we evaluate model performance. And in our conclusion we offer tentative recommendations on how one might summarize crocodilian growth patterns.

Section I: Simulated Populations and Samples for Analysis

We constructed a simulated crocodile population whose members grow according to a known function. We allowed random variability around that growth function (mean amplitude of the variability is proportional to a given animal’s predicted size). From that population we took twenty-five probability samples according to each of three different sampling schemes.
Points 1-5 below describe the construction of the population. Points 6 and 7 explain how the samples were caught.

1. Each simulated crocodile in our population is constructed to have a known age (measured in days) and a known total length (measured in centimeters).

2. The simulated population of crocodilians was created and "grown" according to a formula that gives predicted total length at time $t$ ($PTL_t$) as a function of age ($t$) and 4 growth parameters:

$$PTL_t = \left[ S_a^{1-m} - (S_a^{1-m} - S_0^{1-m})e^{-2(t+m)/T} \right]^{1/(1-m)}$$

where $S_a$ is asymptotic length, $m$ is the curve shape parameter, $S_0$ is length at time zero (hatchling length), $e$ is the base of natural logarithms, $t$ is time, and $T$ is the growth-rate parameter as expressed by Brisbin et al. (1986). For this simulated population we chose parameter values approximately equal to those estimated for a south Florida population of Crocodylus acutus.  

3. Originally this simulated population had one animal at every even-day age from 2 days to 8000 days. Then each simulated animal was assigned a "survival probability." This probability decreases with age in such a way that:

   a. From $t=0$ to $t=360$, survival probability, $P$, is given by

   $$P = (0.998076)^t;$$

   i.e., about half of the animals might be expected to die off by one year of age.

   b. From $t=361$ to $t=8000$, survival probability is given by

   $$P = (0.5)*(0.999711)^{t-360};$$

   i.e., animals that reach one year of age might be expected to "decay out" by about 10% per year.

4. Animals were "killed off" according to their $P$ (or survival probability, as described above) by comparison against

---

Many readers will recognize the above equation as the full, four-parameter Richards model. $S_a$ is set at 400cm; $m$ is set at 0.273; $S_0$ is set at 30cm; $t$ (age) is measured in days; $T$ is set at 6000 days. Given these parameter values, the equation simplifies to approximately

$$PTL_t = [77.929-(66.075)*\exp(-0.0004243*t)]^{1.3755}$$
a set of uniform random numbers. This attrition reduced the simulated population from 4000 to 884 animals.

5. "Random" variability was introduced into "total length" in the following way. Where TL is the length variable to be constructed, and PTL is total length as predicted by the deterministic formula above, and Z is a pseudo-random variable (normally distributed, with average 0 and standard deviation of 1), then:

\[ TL = PTL + PTL \times (0.1) \times (Z). \]

6. We wanted to examine three different sampling schemes: (i) equal capture probability for all animals, (ii) a slight bias in favor of catching younger animals, and (iii) a strong bias in favor of catching younger animals. Therefore, for each of the 884 members in the simulated crocodilian population, we established capture probabilities three different ways:

a. Capture probabilities were equal (for all animals, \( CPU = 0.4 \ )); this will be called the UNIFORM sampling scheme.

b. Capture probabilities were somewhat higher for young animals than for older ones: \( CPM = 0.5 - 0.000025*AGE \). That is, the probability of catching an individual animal is 0.5 when the animal is a fresh hatching and declines linearly with age to 0.3 by the time the animal is 8000 days (about 22 years) old; this will be called the MEDIUM sampling scheme.

c. Capture probabilities were much higher for young animals than for older ones: \( CPS = 0.8 - (0.000075)*AGE \). That is, the probability of catching an individual animal is 0.8 when the animal is a fresh hatching and declines linearly with age to 0.2 by the time the animal is 8000 days (about 22 years) old; this will be called the SMALL sampling scheme.

7. Finally we used a pseudo-random number generator to produce a capture variable which we compared against CPU, CPM, and CPS. For each capture-probability algorithm, we ran through the simulated population twenty-five times to produce (for each type of capture-probability sampling scheme) twenty-five independent data sets of animals "captured."

At this point we have seventy-five samples available for analysis. The next section, MODELS, will explain what we did with these samples.

\[ \text{The following three capture-probability "lines" were selected (i) to represent the three different sampling schemes and (ii) to produce approximately 100 animals in the simulated samples.} \]
Section II: Models Applied to Samples of Simulated Crocodiles

We investigated three related models that give crocodile length as an asymptotic, monotonically increasing function of age.

A. RICHARDS model. This model is specified by four parameters (variously expressed by various authors): STARTING SIZE, ASYMPTOTIC SIZE, CURVE SHAPE, and "AVERAGE" GROWTH RATE. Our other two models are special cases of this mother of all sigmoid curves. In the body of this paper we shall often call this THE FULL MODEL, and the algebraic form we used for it is:

\[ S_t = [S_a - S_0] e^{-[2(1+m)t/T]} + S_0, \]

where \( S_t \) is size at time \( t \), \( S_a \) is asymptotic size, \( m \) is the curve shape parameter, \( S_0 \) is size at time zero, \( e \) is the base of natural logarithms, \( t \) is time, and \( T \) is the growth-rate parameter as expressed by Brisbin et al. (1986).

B. VON BERTALANFFY models. These models are frequently used in the literature on reptile growth, perhaps because they are based on actual, semi-understandable physiological assumptions. 4

1. VON BERTALANFFY MODEL FOR LINEAR GROWTH. 5

This model, a decaying exponential function, is a special case of the Richards curve family: the shape parameter is set to 0. In the body of this paper we shall call this THE VON BERTALANFFY MODEL.

3 Readers will recall that this full Richards model is actually the "correct" one, the pattern according to which our population of simulated crocodiles was actually grown. As we shall see, however, examination of the samples does not always allow the researcher to tell which model is correct, even from the limited assortment which we investigate.

4 Basically, the von Bertalanffy model assumes that growth is a function of the difference between anabolic processes (which are assumed proportional to metabolic rate which is in turn assumed to be the 0.75 power of body mass) and catabolic processes (which are assumed to be proportional to body mass). See Andrews (1982).

5 Some authors call this the monomolecular model (Brisbin, "Ninth working meeting . . ."; Brisbin and Newman, 1991; Leberg et al., 1989).
2. VON BERTALANFFY MODEL FOR GROWTH IN MASS.

This model, a sigmoid function, is a special case of the Richards curve family: the shape parameter is set to 2/3. Curiously, Brisbin ("Ninth working meeting . . .") used this curve in one model of alligator length. Clearly, when dealing with linear dimensions this model lacks the virtue of easy physiological interpretability, but it does sometimes provide a good empirical fit. In any case we chose to use it in our length models as an arbitrarily chosen, fixed "shape," sigmoid curve. In the body of this paper we shall call this THE FIXED SIGMOID MODEL.

Section III: Results of Analyses on Simulated Crocs

Here we deal with three overall questions: (1) From our limited set of models, how easy is it to pick the correct one? (2) How much difference does it make if you pick the wrong model? (3) How much difference does the sampling scheme make?

A. Picking the correct model. We know that the population of simulated crocodiles was grown according to the FULL MODEL; that is the correct one. But if we were ignorant about the actual population model, how confidently could we pick it out by examining the samples? The criterion usually employed is analysis of residual variation around the model. Of course in any direct comparison of residual variance, the FULL MODEL can never do any worse than a tie for first place, no matter what the "true" population growth regime might be. Therefore it is conventional to use the F-distribution in evaluating model fit: How often can we reject the null hypothesis that some reduced model fits just as well as the FULL one? The following table tells the rather sad tale:

---

6 Our two Von Bertalanffy models, for linear dimension and for mass, are algebraically interconvertible if one assumes that mass is a function of the cube of the linear dimension under analysis.

7 In this paper the curve is simply termed "the von Bertalanffy model" as opposed to "the monomolecular model," which we prefer to call "the von Bertalanffy model for linear growth."

8 That is the full, four-parameter Richards model.
<table>
<thead>
<tr>
<th>Type of model:</th>
<th>Type of sampling scheme:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VON BERT. MODEL</td>
<td>UNIFORM</td>
<td>11/25</td>
<td>9/25</td>
<td>9/25</td>
</tr>
<tr>
<td>FIXED SIGMOID MODEL</td>
<td>MEDIUM</td>
<td>2/25</td>
<td>4/25</td>
<td>6/25</td>
</tr>
<tr>
<td>BOTH MODELS</td>
<td>SMALL</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
</tr>
</tbody>
</table>

Table 1: Proportion of samples in which we had statistically significant evidence (P, at the 0.05 level) for rejecting the ("incorrect") reduced models in favor of the ("correct") full model.

Note that we can distinguish the full model from the von Bertalanffy model only about a third of the time. The full model does even worse against the fixed sigmoid model. And we could not select the FULL model against both competitors in any of our seventy-five samples. The moral is simple: At least under some conditions, it's awfully hard to find the underlying population model by examining residual variation to fit in samples!

B. If one is unlikely to find strong evidence for the ("correct") FULL model over its two competitors, then how severe are the errors one is likely to make in selecting one of the ("wrong") reduced models? Any complete answer to this question depends on the context of one's investigation. For this simulation study, we shall address this question in two ways.

1. First, we can evaluate model performance by seeing which models do best how often in estimating three population parameters of possible interest:
   - Hatchling length; HL.
   - Asymptotic length; AL. 9
   - Length at age 10 years; L(10). 10

9 Readers should remember that the asymptotic length predicted by a model is not "the biggest any crocodile is ever going to get." Rather it is an expected (sort of an average) maximum size, around which we might see considerable variability.

10 We figured that expected length at an intermediate life stage might be more interesting to researchers than either hatchling length (which typically is pretty well known) or asymptotic size (which might intrigue more journalists than
The following four tables give the number of times a given model performs best (of the three models) in estimating given parameters under given sampling schemes:

<table>
<thead>
<tr>
<th>Type of model:</th>
<th>Parameter being estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HL</td>
</tr>
<tr>
<td>FULL MODEL</td>
<td>21</td>
</tr>
<tr>
<td>VON BERT. MODEL</td>
<td>2</td>
</tr>
<tr>
<td>FIXED SIGMOID MODEL</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Which model is best at estimating which parameters under the UNIFORM sampling scheme.

<table>
<thead>
<tr>
<th>Type of model:</th>
<th>Parameter being estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HL</td>
</tr>
<tr>
<td>FULL MODEL</td>
<td>18</td>
</tr>
<tr>
<td>VON BERT. MODEL</td>
<td>3</td>
</tr>
<tr>
<td>FIXED SIGMOID MODEL</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3: Which model is best at estimating which parameters under the MEDIUM sampling scheme.

<table>
<thead>
<tr>
<th>Type of model:</th>
<th>Parameter being estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HL</td>
</tr>
<tr>
<td>FULL MODEL</td>
<td>22</td>
</tr>
<tr>
<td>VON BERT. MODEL</td>
<td>0</td>
</tr>
<tr>
<td>FIXED SIGMOID MODEL</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4: Which model is best at estimating which parameters under the SMALL sampling scheme.

biologists). The exact age we decided to evaluate was chosen rather arbitrarily-- because we thought it might be a sort of coming-to-maturity age for a crocodilian and because 10 is such a pretty, round number.
12

<table>
<thead>
<tr>
<th>Type of model:</th>
<th>Parameter being estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HL</td>
</tr>
<tr>
<td>FULL MODEL</td>
<td>61</td>
</tr>
<tr>
<td>VON BERT. MODEL</td>
<td>5</td>
</tr>
<tr>
<td>FIXED SIGMOID MODEL</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 5: Which model is best at estimating which parameters under ALL sampling schemes taken together.

Examination of these tables does not immediately convince one that the "correct" FULL model is all that much better than either of its two reduced competitors. Indeed, for some specific tasks the other ("incorrect") models appear to perform better. 11

2. As we investigate the problems that could result from difficulties in model selection, we might also wonder about the statistical bias of each model in estimating the three parameters defined above. The following table addresses that question:

11 The reasons for this are complex. The high end of all curves responds to the strong influence of a few points whose position varies widely across the samples. On the other hand, the relative abundance of small animals in all samples "locks" the low end of all curves into position. Within these constraints the FULL model, "seeking" a better overall fit, is likely to miss certain specific age-size points by more than its competitors. On the other hand, by fixing its shape, we force the von Bertalanffy curve down in its center, towards the "correct" A(10). The relative performance of these competing models would not be the same given other "true" underlying models of growth in the population.
### Table 6: Model bias in estimating three parameters under three sampling schemes.

<table>
<thead>
<tr>
<th></th>
<th>UNIFORM sampling</th>
<th>MEDIUM sampling</th>
<th>SMALL sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FULL VON B SIGM</td>
<td>FULL VON B SIGM</td>
<td>FULL VON B SIGM</td>
</tr>
<tr>
<td>HL</td>
<td>+</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>L10</td>
<td>+ NS</td>
<td>+ NS</td>
<td>+ NS</td>
</tr>
<tr>
<td>AL</td>
<td>-</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Again, no clear pattern emerges, and one sees no terribly convincing empirical argument for preferring the correct, FULL model over its reduced competitors. Perhaps that's fortunate since it's so hard to demonstrate that the FULL model is the right one.

C. In addition to our concern about model selection, we can also examine to some degree the importance of sampling scheme. When we examine estimates for our three length parameters (HL, L[10], and AL), we find that in 17 out of 18 cases, for whatever model, predicted lengths are "better" for the UNIFORM sampling scheme than for either the MEDIUM or SMALL sampling schemes or for both taken together. Furthermore, as the following table indicates, several of the differences are significant (though the sheer number of hypothesis tests should make us slightly uncomfortable). Thus we have at least limited statistical evidence that sampling schemes can be important.

---

12 Caution should be used in interpreting this table, for statistically significant biases can result from both (1) large average errors in estimating a parameter (which is bad) and (2) small variance in estimates (which is good).
Table 7: P-values on the null hypothesis that there is no difference between parameter values as estimated under the three different sampling schemes. Three-way comparisons are by Kruskal-Wallis one-way "ANOVA"; two-way comparisons are by Mann-Whitney U. For all comparisons except the one marked by * the relationship was in the direction expected under the alternative hypotheses of "UNIFORM allows estimates better than MEDIUM allows estimates better than SMALL," and "UNIFORM allows estimates better than MEDIUM and SMALL taken together." Evaluation under the Bonferroni procedure for multiple comparisons suggests that only values of p < 0.0028 should be considered significant.\(^\text{13}\)

---

We have learned in these sections that there are no particularly clear winners in the competition of fitting models to our simulated data. As we apply a different set of "models" to real-world data on American crocodiles, we shall at least be able to identify a set of real losers.

---

\(^{13}\) Non-parametric statistics were used because of doubts about the shape of the theoretical distribution of parameter estimates. For brief information on multiple comparisons and the Bonferroni procedure, please see Wilkinson. 1988, pp. 490-491.
Section IV: Actual Croc Data, Models and Application

1. The data. We used actual growth records taken from a population of Crocodylus acutus in southern Florida. The data were collected by Paul Moler (Florida Game and Fresh Water Fish Commission). In this paper we are concerned not with the specific growth of American crocodiles but rather with the performance of various growth models in fitting the data. Therefore, in order not to poach on Paul's intellectual property, we have been careful (1) never to fit any growth curves to his entire data set and (2) never to make public any specific parameter values for curves fit to subsets of Paul's data. The subset of data we used included about 850 capture-events for 340 known-age animals.

2. Curve fitting and testing plan.
   a. We used a random number generator to chop the data set into two approximately equal parts, a CALIBRATION DATA SET and a TEST DATA SET.
       b. We fit the following 12 "models" to the calibration data set:

       REGRESSION
       LINE ALL: length as a function of age, all captures;
       LINE LAST: length as a function of age, last captures only for each animal;
       QUAD ALL: length as a function of age and age squared, all captures;
       QUAD LAST: length as a function of age and age squared, last captures only;
       CUBE ALL: length as a function of age, age squared, and age cubed, all captures;
       CUBE LAST: length as a cubic function of age, last captures only;
       FOUR ALL: length as a function of age, age squared, age cubed, and age to the fourth power;
       FOUR LAST: length as a quartic function of age, last captures only.

       VON BERTALANFFY
       VONB INT ALL: Von Bertalanffy model fit (by a nonlinear program using the Quasi-Newton method of variance minimization; SYSTAT) to all inter-capture intervals for all animals;
       VONB INT LONG: Von Bertalanffy model fit (as above) to only the longest inter-capture interval (first capture to last capture) for each animal;
       VONB FD ALL: Von Bertalanffy model fit by a finite difference method (using linear regression to estimate asymptotic length and the growth rate parameter; see Andrews, 1982, p. 287) to all inter-capture intervals for all animals;
       VONB FD LONG: Von Bertalanffy method fit by a finite difference method (as above) to only the longest inter-capture interval for each animal.
c. The specific curves derived as above (fit to the CALIBRATION DATA SET) were applied to the entirely different TEST DATA SET, and residual sums of squares were compared to see which models worked best. Because we could not define the shape of the probability density function for this residual variance, we maintained a record of the rank of model fit (1 for "best," 12 for "worst") for non-parametric analysis.

d. We repeated steps a-c above for a total of 35 tests.

Section V: Analysis and Evaluation

There are some classes of "models" which the researcher should not even consider.

(i) Higher-order polynomials. Of course the best fits to the CALIBRATION data sets were inevitably obtained by the fourth-power polynomials, which could snake their way around to fit whatever points were at hand. As one should also suspect, these "models" were among the worst in explaining variance within the TEST data sets. Third-power polynomials were almost as bad:

<table>
<thead>
<tr>
<th>RANK BASED ON:</th>
<th>CUBE</th>
<th>CUBE</th>
<th>FOUR</th>
<th>FOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL</td>
<td>LAST</td>
<td>ALL</td>
<td>LAST</td>
</tr>
<tr>
<td>median</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>mean</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 8: Higher Polynomials, Rank out of 12

Among the fourth-order polynomials, there were some real horror stories, including some equations that left more residual variation in the TEST data than the fit of a simple mean. Furthermore, for both cubic and fourth-order polynomials, the statistical significance of coefficients associated with higher-order terms (in their fit to CALIBRATION data) was of no apparent help in guessing goodness of fit to TEST data. Thus, in our study, all the old warnings against polynomial regression are affirmed: They describe very well, but extrapolation is probably disastrous, and generalizations beyond the data in hand are dangerous.

14 Yes, this is a negative coefficient of determination. You can think of it as being a sort of negative R-square.

15 The reasons for this are not mysterious. Large animals are scarce in the samples (as indeed they are in the population). For this reason the regression is particularly sensitive to violations of the assumption of homoscedasticity.
(ii) Linear regression. Crocodiles don't grow at the same rate throughout their lives, so it's silly to model their growth by a straight line. Their fit to TEST data was predictably bad:

<table>
<thead>
<tr>
<th>RANK BASED ON:</th>
<th>LINEAR ALL</th>
<th>LINEAR LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>median</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>mean</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 9: Linear Regression, Rank Out of 12

(iii) Von Bertalanffy fit by finite difference methods. Andrews (1982) suggests that using linear regression to estimate Von Bertalanffy parameters should be avoided if a non-linear curve-fitting program is available. That is certainly true for our work! The fit of such curves to our TEST data sets is almost uniformly terrible:

<table>
<thead>
<tr>
<th>RANK BASED ON:</th>
<th>VONB FD ALL</th>
<th>VONB FD LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>median</td>
<td>9.5</td>
<td>12</td>
</tr>
<tr>
<td>mean</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 10: Von Bert., Finite Difference, Rank Out of 12

b. Almost-decent options.

Quadratic regressions fit the CALIBRATION data sets fairly tightly, and they usually perform almost as well on the TEST data sets:

<table>
<thead>
<tr>
<th>RANK BASED ON:</th>
<th>QUAD ALL</th>
<th>QUAD LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>median</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>mean</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 11: Quadratic Equation, Rank Out of 12

Thus we might conclude that quadratic equations do a pretty good job of describing crocodile growth. Of course there is one severe problem because the quadratic (= parabolic) equations must not be extrapolated to very old animals—unless one assumes that some very serious crocodile shrinking is going on!
c. Options to be considered.

The integrated form of the von Bertalanffy equation fits the TEST data sets well:

<table>
<thead>
<tr>
<th>RANK BASED ON:</th>
<th>VONB INT ALL</th>
<th>VONB INT LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>median</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>mean</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 12: Von Bert. Integrated Form, Rank Out of 12

It is interesting to note that the fit using only one inter-capture interval (the longest) per animal provided significantly better performance than the fit to all inter-capture intervals.

Section VI: Conclusion

It should be clear that we have no fancy new theoretical insights to tell you. Nevertheless, we do have a few modest recommendations that we'd like to offer.

1. Things not to do.
   a. Using linear regression to estimate von Bertalanffy parameters in finite difference analysis appears not to be a good idea.
   b. Polynomial regression (especially with equations higher than second order) can describe data sets quite well, but we recommend against it. Extrapolation of such equations is always a bad idea, and if regression assumptions are not perfectly met (they seldom are), any generalization beyond in-hand data is very dangerous.

2. Things to be careful about.
   a. Transforming data for conventional regression analysis can create models which are difficult to interpret. Furthermore, since transformations alter variance, one must not directly compare residual variance around fitted models.
   b. Given most samples that biologists are likely to obtain, it is difficult to determine with certainty what the underlying population model really is. For example, under several sampling schemes, F-tests are not very powerful for

\[ P \text{ is about 0.01 by SIGN test on ranks. This is rather nice since the one-interval-per-animal fit helps assure independence of observations. Such independence is appropriate if one wishes to perform inference involving confidence intervals or hypothesis tests. Overall, however, our work leaves us leery of performing such procedures on crocodile growth curves, even under the best of circumstances.} \]
rejecting null hypotheses that reduced-parameter models fit as well as the full Richards model.

c. Crocodilian populations often have lots more young animals than old ones. In this sense, even if one could examine every member of a living crocodilian population, the older, larger individuals might provide an inadequate "sample" of the growth trajectories available to the species.

Furthermore, practicable sampling schemes (especially those that secure known-age animals) sometimes exacerbate the problem of disproportional representation by age. For these reasons, individual observations of older, larger animals often have extreme statistical leverage on the shape of fitted growth curves. Thus one needs to be careful when fitting mathematical curves to age-size data. For example, one or two observations (perhaps of aberrant individuals) can largely define the asymptotic length estimated for a population. Thus we recommend that people remain cautious about describing crocodilian growth patterns until their sample includes a substantial number of large animals.

d. Given (1) the typical structure of wild crocodilian populations, (2) the nature of sampling strategies conventionally applied to their study, and (3) the behavior of our sample statistics under simulation, we would recommend caution in the use of inferential procedures involving confidence intervals or formal hypothesis tests. All too often our sample statistics did not lie within purported "95% confidence intervals" of the known population parameters.

3. Things one might consider doing.

a. If one is interested in the overall growth pattern of a crocodilian population, then it's probably worth the extra trouble to ensure that older, larger animals are represented at least proportional to their abundance in samples to be analyzed.

b. We believe that either the von Bertalanffy model or the full Richards model may often be used for summarizing the growth of crocodilians. The former is more appropriate if one wishes to compare results with other published data; the latter is probably better if one is concerned about the possibility of technical "specification error." Of course

17 In a sense, even if one could examine every member of a living crocodilian population, the older, larger individuals might provide an inadequate "sample" of the growth trajectories available to the species.

18 For example, in our 35 sub-samples of the C. acutus growth data, our best estimation method produced estimates of asymptotic length ranging from 263.4cm to 572.5cm. These two extreme values were the exceptions to a general pattern with a somewhat more reasonable standard deviation (83cm), but one should note that they were generated from random samples of the same population of data points.
neither should be applied until the researcher has examined a scatterplot of the data. 19

c. We think that perhaps it may be wise for researchers to worry less about fitting general curves to scatterplots and to concentrate (at least initially) on close examination of the point-cloud itself (which scatterplot, we are convinced, should certainly be presented in any formal publication). To some degree all "growth curves" are abstract human generalizations. Even an individual crocodilian does not always grow according to a fixed, internal schedule (that's the lowly sort of thing that young mammals--which basically must grow or die--are forced to do); rather it responds to the varying environmental conditions that surround it, growing faster or slower as food and warmth permit. And when you get a whole population of crocs, the whole picture becomes even more complex.

Thus in a size-age scatterplot, cohort clusters of outlying data points (or even single outliers) may, under careful analysis, reveal more relevant information about the biology of the beast than four-digit parameters fit to abstract mathematical curves. (Indeed the most important function of these "growth curves" may be that they assist us in the identification of outliers for systematic analysis.)

Anyhow, when all is said and done, we reckon the very best use of growth curves is to encourage managers and biologists to ask questions like, "Is that extra-fast-growing male going to contribute more than his share of genes to the next generation?" or "What the heck is happening to the hatch of 1987 anyhow?"

Literature Cited


19 Relatively "assumption-free" curve-fitting techniques such as SYSTAT's LOWESS routine (try various levels of the "tension" parameter) are quite appropriate in exploratory phases of data analysis.


Eduardo Asanza

Institute of Ecology, University of Georgia
Athens, Georgia 30602 U.S.A.

Fundacion Cuyabeno
San Javier 196, Quito - Ecuador

The Black Caiman, *Melanosuchus Niger* was distributed widely throughout the Amazon Basin until the middle of the present century. Although few reports are available in the literature concerning the status of this species until the beginning of the twentieth century, Wallace (1853), Bates (1863), Goeldi (1898) and Hangman (1902) gave anecdotal accounts of abundant populations along the "alto Solimoes" (Upper Amazon River) and found large numbers of the species in the Mexiana, Marajo and Caviana Islands of the Amazon River delta. The occurrence of *Melanosuchus niger* populations in Ecuadorian Amazonia has been reported by La Condamine (1778), De Ulloa (1789), De Velasco (1985), De la Espada (1881) and Schmidt (1928).

Black Caiman populations have been severely depleted because of extensive hunting during the past 70 years. Aguirre (1956) mentions that between 1950 and 1954 a quantity of 560,000 skins was exported from Manaus and Belem. He stated that the minimum size of the Black Caiman to be harvested should be 230 cm total
length which corresponds to the minimum breeding size of *Melanosuchus* females (Aquirre, 1956). Fittkau (1973) estimated that during the 1960's more than 5 million skins were traded and in addition 1 to 2 additional individuals were sacrificed for each skin reported in the trade. Carvalho (1967), Medem (1972, 1983), Smith (1980), Rebelo and Magnusson (1983) provide data about the effect of hunting on *Melanosuchus niger* populations in Brasil.


Few ecological data have been compiled on the Black Caiman in Ecuador. Medem (1963, 1983) presents data mainly based on personal communications from settlers and hunters. Asanza (1985) provides data on the distribution, ecology and conservation of the Alligatoridae in Ecuadorian Amazonia.

**Results.**

*Melanosuchus niger* was heavily exploited by hunters in Ecuadorian Amazonia during a period of 40 years (1930 - 1970) (about 500,000 trade skins were taken) and in many localities the species has evidently been depleted (Asanza, 1985). Most Black Caimans were hunted during the 1950s and '60s and the skins exported to Leticia (Colombia) and Manaus (Brazil).
The Black Caiman is protected by a 1970 federal law in Ecuador which bans wildlife exploitation. In addition, more specific decrees and laws, the Decreto No. 487 (1980) and Ley No. 74 of August 1981 prohibit commercial hunting of all reptiles and the export of any indigenous species.

Asanza (1985, 1988), and Asanza et al (1988) found that Black Caiman inhabit lakes and rivers up to an altitude of 300 meters, but its range is restricted by habitat preferences, interspecific interactions with Caiman crocodilus, and past hunting. Currently, human activities such as continued hunting, deforestation, pollution, fishing and live trading are then causes for declining populations of Melanosuchus niger throughout much of its range.

Nonetheless, there are some localities which remain important for maintenance of the species in the wild. Significant populations can still be found in the Aguarico river system (Cuyabeno lakes and river, Guepi, Lagartococha lake system and river, Imuya Pacuya and Zancudococha lakes, and Cocaya river); the Napo river system (Jivino and Indillana rivers, Taracoa, Limoncocha, Anango, Challuacochoa and Panacocha lakes, Tipitini and Yasuni rivers, Garzacocha and Jatuncococha lakes); lower Nashino and Cononaco rivers; the middle and lower Curaray river; lower Pindoyacu river; the Pastaza river system (Bufeo, Capahuari and lower Ishpingo rivers); lower Yaupi and Upper Morona rivers. These systems were surveyed at least once since 1978 and some of them more than twice during the 1980s.
Because of lack of funds to carry out surveys in most of the localities just four of them were censused annually. Site selection was based on the trophic quality of the waters and because they belong to the Protected Areas System of Ecuador and therefore considered to minimize external disturbance that could confound survey results.

The Cuyabeno lake and river system, Zancudococha, and Lagartococha lakes and river belong to the "Reserva de Produccion Faunistica" Cuyabeno Reserve. Limoncocha belongs to the "Reserva Biologica" Limoncocha Biological Reserve. In all the localities Caiman crocodilus is sympatric with Melanosuchus niger.

The populations belonging to the Cuyabeno Reserve have shown very similar abundance throughout the survey period. The Cuyabeno lakes, and Cuyabeno lakes and river systems have mean densities (5.68 animals/km and 3.15/km respectively) in a period of 9 consecutive annual censuses. (Figure 1) Zancudococha lake presents sympatric populations of 23.53/km over a 5 year period of consecutive censuses. Lagartococha (Imuya) shows a mean density of 23.59/km over 2 years of survey (figure...).

The Limoncocha lake belonging to the Limoncocha Biological Reserve shows a steady decline of its population in 8 years of annual surveys (figure 3.).
In Zancudococha and Lagartococha the population ratio of Black Caiman vs Spectacled Caiman is approximately 3:1. Limoncocha shows similar data during the first two years (1983 - 1984) of surveys. In subsequent years (1985 - 1990) the ratio has changed in favour of Caiman crocodilus but without increasing the abundance of the population. Beginning in 1985 there was a steep decline in population numbers followed by continued population decline until 1990 the most recent year for which data is available.

In Cuyabeno the ratio of Black Caiman vs Spectacled Caiman is only about 1:5, as supported by recent survey data (Asanza, 1985).

Discussion

The data related to the Cuyabeno Reserve suggest that populations found in the various localities show stability but lack apparent increase. The Cuyabeno lakes and Cuyabeno lakes and rivers show no changes or trends in the 1 Black Caiman per 5 Caiman crocodilus ratio. The other localities such as Zancudococha and Lagartococha (Imuya) similarly maintain the ratio of 3 Black Caiman per 1 Spectacled Caiman.

The densities of 23.52/ km and 23.59/ km in Zancudococha and Lagartococha (Imuya) are very similar, and differ strikingly with those of Cuyabeno lakes and Cuyabeno lakes and river system which present densities of 5.68/ km and 3.15/ km where the species ratio is much more skewed toward Spectacled Caiman.
Despite the fact that during a period of 40 years in this century the Black Caiman populations were heavily hunted throughout much if not all its range in Ecuador, the Cuyabeno lakes population feature strong competition with *Caiman crocodilus*. The Spectacled Caiman appears to play the role of a fast colonizer of "empty" lakes and rivers formerly populated by Black Caiman.

By being more adaptable to changing ecological conditions such as intense hunting and habitat degradation (e.g. deforestation, decline in trophic quality, pollution), *Caiman crocodilus* tends to outcompete the former dominant species (Black Caiman), and thus explains the hindered recovery of *Melanosuchus* in the Cuyabeno Region.
BLACK CAIMAN POPULATION
CUYABENO - ECUADOR

YEARs

NUMBER OF INDIVIDUALS

- CUYABENO Lakes
  a = 5.68 /Km

- CUYABENO Lakes & River
  a = 3.15
FIGURE NO. 2

BLACK CAIMAN POPULATION
ZANCUDOCOCHA – ECUADOR

--- | --- | --- | --- | --- | ---
NUMBER OF INDIVIDUALS | 267 | 253 | 272 | 267 | 270

\[ \text{\( a = 23.52 \text{ /Km} \)} \]

BLACK CAIMAN POPULATION
LAGARTOCOCHA – ECUADOR

YEAR | 1979 | 1987 (2) | 1988
--- | --- | --- | ---
NUMBER OF INDIVIDUALS | 342 | 328

\[ \text{\( d = 23.59 \text{ /Km} \)} \]
FIGURE N° 3

BLACK CAIMAN POPULATIONS
LIMONCOCHA-ECUADOR

BLACK CAIMAN DECLINING POPULATION
LIMONCOCHA-ECUADOR

\[ y = 9.6397e+4 - 48.405x \quad R^2 = 0.880 \]
"Effect of diets complemented with Sodium L-Thyroxine, white corn flour and a complement of vitamins and essential amino acids in Caiman Crocodilus growth."

Avendaño, Gregorio; Báez, Leonor; Michelangeli, Leonardo.

1.- INTRODUCTION

In recent years, many studies have been carried out for optimizing the growth of Caiman crocodilus in captivity. Such parameters as water temperature, amount of food, feeding time, food type and the combination thereof, are very important in the growth of babas.

It is known that the thyroid hormone is essential to growth during the first stages of life, not only in man but also monkeys, ruminants, rodents and birds. The thyroid hormone effect on human growth is fundamentally manifested in children in the growth stage.

Precocious metamorphosis (1) was observed in experiments carried out with "temporaria" frog, "esculenta" frog, "Bufo vulgaris" and "Triton alpestris", in which tadpoles were fed with horse thyroid glands.

It is presumed that the thyroid hormone growth promoter effect is based on its ability to promote protein synthesis.

It has been reported (2) that in the carbohydrate metabolism, the thyroid hormone stimulates almost all aspects: it accelerates the glucose intake in cells, increases glycolysis, increases gluconeogenesis, increases the gastrointestinal tract absorption rate and increases insulin secretion with secondary effects on the carbohydrate metabolism.

The object of this work is to evaluate the effects of diets complemented with sodium L-Thyroxine, white corn flour and complement of vitamins and essential amino acids in Caiman crocodilus growth.

2.- MATERIALS AND METHODS

Babas (Caiman crocodilus) of both sexes were used. At 24 hours of emerging from the eggs, the babas were placed in 6x2 m tanks (density = 16.6 babas per 2m). Previous experiments indicated that the water temperature of the tanks during the summer months had a maximum 9.2 °C temperature fluctuation. (Minimum temperature: 25 °C and maximum temperature: 34.2 °C therefore the tanks were kept at a controlled 30.5 °C temperature (optimum for the baba - metabolism) and with clean water circulation 24 hours a day.
The animals were kept on a basal diet for four months prior to initiation of the diverse experimental diets. The basal diet (10% of the weight) consisted of: 75% fish meal, 24% bone and blood meal, 1% Pecutrin, 84 mgs. Virginiamicine/Kg of mix and 300 mgs oxytetracycline/Kg. of mix.

From the second month of the experiment, the basal diet (10% of the weight) was modified to: 75% fish, 24% red meat, 1% Pecutrin, 84 mgs Virginiamicine/Kg. of mix and 300 mgs Oxytetracycline/Kg. of mix.

At four months of the experiment, the basal diet (10% of the weight) was modified to: 50% red meat, 50% Babarina, 1% Pecutrin, 84 mgs Virginiamicine/Kg of mix and 300 mgs Oxytetracycline/Kg. of mix.

2.1. Experimental Design

100 Babas were selected at random from a group of 850 babas. The remaining 750 were used as a control group and continued with the basal diet. The 100 babas were divided into four groups of 25 babas each.

Group 1: Basal diet (10% of the weight) + 0.025 mgs/day of sodium L-Thyroxine.

Group 2: Basal diet (10% of the weight) + 0.025 mgs/day of sodium L-Thyroxine + 100 grs/day of white corn flour.

Group 3: Basal diet (10% of the weight) + 0.375 grs/day of vitamins and essential amino acids.

Group 4: Basal diet (10% of the weight) + 0.025 mgs/day of sodium L-Thyroxine + 0.375 grs/day of vitamins and essential amino acids.

As of 5 months of the experiment, the amount of sodium L-Thyroxine (0.05 mgs/day), white corn flour (200 grs/day) and vitamins and essential amino acids (0.750 grs/day) was doubled.

Sodium L-Thyroxine (Testam) Laboratorio FARMA was used.
- White corn flour (P.A.N.) REMAVENCA
- vitamins and essential amino acids compound (Promotor 43) Laboratorio CALIFER
- Babarina - Protinal
- Virginiamicine - Laboratorio Lilly
- Oxytetracycline: 200 mg/cc. concentration - Laboratorio Mc Kesson
- Pecutrin - Minerals - Laboratorio Bayer
Two of the 6 x 2 m. tanks were divided longitudinally with a grid and the four experimental groups were placed inside.

Treatment duration for all experimental groups was 8 months. A bimonthly weight and length control was kept.

2.2. Diet Administration

The ingredients were mixed and placed in approximate 2 cm. pieces on a wooden table in the dry zone of the tank. The diet was administered once a day (4pm.).

2.3. Weight

The babas were weighed every 2 months per group on a 20 Kg. capacity scale (Jacobs Manvill).

2.4. Size

The babas were measured every 2 months individually from tail to snout.

2.5. Histopathological Study

During the first two months of treatment, mortality in all babas (fundamentally in the control group) was very high, thus 10 control group specimens were sacrificed by cervical dislocation and hematological and parasitological examinations were performed (Marine Biologist, Gina Armas de Conroy, M. Sc. Aquatic Pathobiologist). These examinations were carried out by observing fresh preparations of the different organs and annexes, such as lungs, liver, spleen, intestine, stomach, trachea, oesophagus and blood.

Blood samples were extracted by cardiac puncture. Sodium heparine was used as an anticoagulant. Blood smears were colored with GIEMSA.

Once all treatments were finalized (8 months), the babas were weighed, measured (length and width) and the sex was determined according to the works of (Chabreck, 1967; and Brazaitis, 1969). The same amount of male and female specimens was obtained.

3. RESULTS

3.1. The effect of diets complemented with sodium L-Thyroxine, white corn flour and a complemented of vitamins and essential amino acids on:
Group 5: Basal diet.
Group 4: Basal diet + sodium L-thyroxazine + vitamins and essential amino acids.
Group 3: Basal diet + vitamins and essential amino acids.
Group 2: Basal diet + sodium L-thyroxazine + white corn flour.
Group 1: Basal diet + sodium L-thyroxazine + white corn flour.

<table>
<thead>
<tr>
<th>Group</th>
<th>Diet Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basal diet + sodium L-thyroxazine + white corn flour</td>
</tr>
<tr>
<td>2</td>
<td>Basal diet + sodium L-thyroxazine</td>
</tr>
<tr>
<td>3</td>
<td>Basal diet + vitamins and essential amino acids</td>
</tr>
<tr>
<td>4</td>
<td>Basal diet + vitamins and essential amino acids + sodium L-thyroxazine</td>
</tr>
<tr>
<td>5</td>
<td>Basal diet</td>
</tr>
</tbody>
</table>

White corn flour and a complex of vitamins and essential amino acids.

Table 1: Weight, size and mortality percentage in pigs complemented with sodium L-thyroxazine.

Results are summarized in the following table:
Table I: Average weight and size increase in babas complemented with sodium L-Thyroxine, white corn flour and a complex of vitamins and essential amino acids.

<table>
<thead>
<tr>
<th>Month</th>
<th>0 - 2</th>
<th>2 - 4</th>
<th>4 - 6</th>
<th>6 - 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Weight (grs) Average/Month</td>
<td>Size (cms) Average/Month</td>
<td>Weight (grs) Average/Month</td>
<td>Size (cms) Average/Month</td>
</tr>
<tr>
<td>1</td>
<td>18.65</td>
<td>1.37</td>
<td>77.68</td>
<td>4.83</td>
</tr>
<tr>
<td>2</td>
<td>18.94</td>
<td>1.64</td>
<td>67.55</td>
<td>4.24</td>
</tr>
<tr>
<td>3</td>
<td>20.81</td>
<td>1.37</td>
<td>74.39</td>
<td>4.83</td>
</tr>
<tr>
<td>4</td>
<td>17.65</td>
<td>1.73</td>
<td>88.56</td>
<td>4.87</td>
</tr>
<tr>
<td>5</td>
<td>22.92</td>
<td>0.92</td>
<td>75.05</td>
<td>4.78</td>
</tr>
</tbody>
</table>

Group 1: Basal diet + sodium L-Thyroxine.
Group 2: Basal diet + sodium L-Thyroxine + white corn flour.
Group 3: Basal diet + vitamins and essential amino acids.
Group 4: Basal diet + sodium L-Thyroxine + vitamins and essential amino acids.
Group 5: Basal diet.
3.3. Histopathological Study

3.3.1. Haematological Results.

Table III: Blood Values

<table>
<thead>
<tr>
<th>VALUE</th>
<th>SAMPLE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HD (g/100 ml)</td>
<td>-</td>
</tr>
<tr>
<td>Ht (%)</td>
<td>24</td>
</tr>
<tr>
<td>Erythrocyte Count (x 10/mm3)</td>
<td>0.83</td>
</tr>
<tr>
<td>V.C.M. (a3)</td>
<td>480</td>
</tr>
<tr>
<td>C.M.H.C. (%)</td>
<td>-</td>
</tr>
<tr>
<td>H.C.M. (mg)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table III shows blood values obtained in the 10 samples of the control animals sacrificed for this purpose.

The plasm presented a clear colorless aspect in samples No. 1, No. 2, No. 3, No. 4, No. 6 and No. 8.

The plasm presented a clear, pale straw color in sample No. 5.

The plasm presented a "milky", light colored aspect in samples No. 7.
Table IV: Haematological Results: Leukocytic Formula and Morphological Aspects

<table>
<thead>
<tr>
<th>VALUE</th>
<th>SAMPLE No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes (%)</td>
<td></td>
<td>50</td>
<td>*</td>
<td>31</td>
<td>45</td>
<td>*</td>
<td>66</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td></td>
<td>35</td>
<td>*</td>
<td>61</td>
<td>36</td>
<td>*</td>
<td>28</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Neutrophiles (%)</td>
<td></td>
<td>10</td>
<td>*</td>
<td>5</td>
<td>7</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Basophiles (%)</td>
<td></td>
<td>5</td>
<td>*</td>
<td>2</td>
<td>11</td>
<td>*</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eosinophiles (%)</td>
<td></td>
<td>0</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Macrophages (%)</td>
<td></td>
<td>0</td>
<td>*</td>
<td>1</td>
<td>1</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>*</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The blood smear reading could not be effected

Table IV shows cell count values obtained in control babas.

In the blood tests, some nuclei in declepsidral form were detected in the peripheral blood erythrocytes of sample No. 3 and No. 7. In other inferior cultivated aquatic vertebrates (e.g. teleostean fish), the presence of erythrocytes with these nuclear characters have been found in animals with a follic acid deficient diet.

Clear signs of anisocytosis were observed in the peripheral blood of sample No. 3. In addition to this, the average corpuscular volume was very small in the case of sample No. 6 and No. 7 and somewhat smaller in the case of sample No. 4, representing 37.5% of the haematologically tested babas. The microcytosis presence at the peripheral blood level has been related to a Vitamin E deficient diet in cultivated teleostean fish.

The relative number, morphology and distribution of thrombocytes were apparently normal in the blood smears tested.
A marked cytoplasmatic granularity was observed at the hepatocyte level, as well as numerous melanophages in the sinusoids.

3.3.2 Parasitological Results:

Table V:

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td></td>
</tr>
<tr>
<td>Trachea</td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td></td>
</tr>
<tr>
<td>Lungs</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
</tr>
<tr>
<td>Intestine</td>
<td>+</td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
</tr>
</tbody>
</table>

+: Abundant trichomonads were found inside the entire intestine

Table V shows the parasitological study results performed on control babas.

As observed in the Table, parasites were only detected in the intestine.

In all C. Crocodilus specimens, the liver was a clear grey color with a tendency to cream, and slightly soft on tact. When observing fresh preparations of this organ, a marked lipide infiltration was found.

Hairiness atrophy and fusion areas were detected in the intestine, as well as mixed leukocytic cellularity in the intestine membrane itself.
4.- CONCLUSIONS

1) The most favorable basal diet for experimental babas was: 75% fish, 24% red meat, 1% Pecutorin, 84 mgs of Virginiamicine/Kg. of mix and 300 mgs Oxytetracycline/Kg. of mix. Similar works (5,6) report that fish feeding produces a higher yield than red meat.

2) Mortality in group 2 (basal diet + sodium L-Thyroxine + white corn flour) increased significantly after six months of experimentation. It is known that white corn flour contains a large complex carbohydrate proportion. The high mortality percentage may be correlated with the absence, in these animals, of certain enzymes involved in the degrading of such carbohydrates, which would cause their accumulation. Roland Coulson (1991) reported that babas were unable to use raw plant matter owing to the absence of the sucrase enzyme required to hydrolyze plant sucrose into glucose. (7)

3) The experimental groups complemented with vitamins and essential amino acids (groups 3 and 4) obtained lower total mortality values.

4) Diets complemented with sodium L-Thyroxine, white corn flour, vitamins and essential amino acids, did not significantly alter size and weight growth of babas (Caiman crocodilus) bred in captivity.

5) From the parasitological results obtained, it may be concluded that, although it is true that trichomonad presence is almost normal in this group of animals, such a high amount of these, as observed, is not at all beneficial for the animals, since the intestinal absorption will be lower owing to inflammatory problems. In order to correct this problem, the following was recommended:

a.-Add metronidazole in an amount of 10 mgs/Kg. of food for 3 successive days.

b.-Disinfect the tanks with Vanodine.

The described histopathological case is interpreted as one of metabolical-nutritional type alterations, without evidence of steatitis type changes. The conclusion was that fish, bone and meat meal are not sufficient food for small babas bred in captivity. The mortality caused by this nutritious deficit was compensated in the experimental groups complemented with sodium L-Thyroxine, white corn flour and vitamins and essential amino acids.


7. Coulson, Roland (1991), Cold Blooded Reasearch, Crocodile Specialist Group Newsletter 10 (2) : 19
THE INVOLVEMENT OF RURAL COMMUNITIES IN
THE CROCODILE RANCHING PROGRAMME
IN MADAGASCAR

O BEHRA, RAMANDIMBISON

1992

GENERAL

The decline of crocodile populations in the world, combined with their constant, if not increasing, economic value, has led many countries to develop crocodile farming programmes. Farming technology as well as population management programmes have evolved considerably during the last fifteen years in many very different countries of the world. If it was hunting pressure that was the principal cause leading to the disappearance of crocodiles, then it is the notable socio-economic differences between the countries that has led to the establishment of relatively different management programmes, depending upon the country in question.

Also, in countries such as the United States and Australia, the management problems faced are hardly linked to the economic problems of rural populations living on the rivers alongside crocodiles, but rather, the authorities responsible for crocodile conservation have mainly to face the problem of public education where crocodiles are still seen as a dangerous and undesirable animal (Buttler, 1987). In Africa this negative perception also exists but the conflicts between men and crocodiles are often much more important given the economic dependence of the people on the habitats frequented by crocodiles: artisanal fishing, tropical culture such as rice culture, the use of waterways for transport and obtaining drinking water, etc. It is why, therefore, the economic aspect seems far more important in these countries. Indeed, it is even more obvious that in these developing nations, abstract ecological concepts are less easily perceived by those in control than short term economic projects. For many, "Environmental and ecological concerns and the deteriorating renewable resource situation must therefore be depicted in "concrete" economic terms" (Muthoo, 1990).

As the crocodile farming industry has now really started earning considerable sums in terms of foreign exchange, more than 8.16 million Zimbabwe dollars per year in Zimbabwe (Hutton & Lippai, 1992) numerous governments have become extremely interested in and concerned with crocodile conservation. All the more given that the system is established to collect crocodile eggs from the wild without detriment to the wild population because, with the advance of crocodile farming technology, the natural mortality of these eggs can be offset via their continued survival, after collection, on crocodile farms.

Be that as it may, at the practical level, the benefit of these conservation management programmes is mixed because if the benefits from the crocodiles are
in turn used for crocodile protection, then the rural communities living alongside the crocodiles, do not benefit at all and, as a result, have no motivation towards the protection of crocodiles. Given that for these communities, the crocodile could, quite justifiably, be considered a nuisance, they then proceed on a crocodile extermination course.

Also, it has become more and more evident in, for example, Zimbabwe and other developing countries that rural populations have to be implicated in management programmes. However, to actually effectuate any tangible economic benefit for these peoples has proved to be far from simple (Hutton & Child, 1989). In fact, schemes to involve rural communities in egg collection operations, such as those already proposed in other countries, such as Botswana (Medem, 1981), have proved to be not at all satisfactory especially given the delicacy required whilst collecting the eggs, which is difficult to explain to the rural communities who are, by far and large, poorly educated.

A similar problem occurred in Papua New Guinea with an United Nations programme which also tried to involve the rural communities directly into the creation of farms and the farming of young crocodiles. One recalls that these small farms did not work and that even though the project began with the best of intentions, the villagers had to wait three or four years before they received any revenue for their work (Sinba, 1989). Also, the intention to change the method of collection to that of hatchlings in place of eggs proved to be non-profitable because of the problems of hatchling conservation and fragility together with the time limit of collection (Bolton, 1990).

The only system which seemed to offer any hope of success was that attempted in the north of Zimbabwe in 1985 (Hutton & Child, 1989), which involved the rural communities in the location as well as the protection of crocodile nests. In Madagascar, although there were only two farms, of little importance, before 1989, no management programme has ever been established in this country. It was in 1989, following the request of the Government, that FAO financed a preparatory project on the development of crocodile farming in Madagascar. The project leader successfully argued for the need to orientate the plan towards a ranching approach, which advocates perfectly the need to involve rural populations at least during the collection.

THE MADAGASCAR STORY

Situated in the Indian Ocean, east of the continent of Africa (more precisely Mozambique), Madagascar is the fourth largest island in the world and is divided in two longitudinally by an important mountain chain. This chain is aligned more to the east with a large difference between the Eastern and Western slopes (Bastion, 1967)

Situated in the tropics, the island is subject to a rainy season and a dry season, with a large variation in duration and intensity of each from area to area. The geography of the country has an impact on the formation of flooded rivers during
the rainy season and, in contrast, incredibly dry periods during the dry season. If these conditions are not ideal for small crocodiles, there is no doubt that in the beginning, the low density of humans along with a very favourable biogeography for crocodiles, provided the Nile Crocodile (*Crocodylus niloticus*) with a very favourable territory in Madagascar.

For some locals in Madagascar crocodiles were sacred and protected (Behra & Hutton, 1988). At the same time, since the beginning of the century crocodiles were hunted by many people (Petit G, 1925), although the hunters did not hunt regularly but rather following attacks on humans - a practice which was not sufficient to stop the proliferation of crocodile populations (Raffray, 1950). In the 1950’s, the colonial French administration attempted to exterminate crocodiles in the country by offering bonuses for killing crocodiles and collecting the eggs (J O Mad & Depend N° 1539). However, this plan failed since from the first few weeks many thousands of eggs were collected and the administration could no longer pay the people. For example, Decary R (1950) tells us that an inhabitant of Marovoay collected, for his bonus, 7000 eggs in three weeks.

As in most African countries, it was hunting that was the main cause for the drop in population numbers and if the high export trade figures in the 1940’s are surprising (Behra & Hutton, 1988), there is no doubt that during the 1960’s the drop in exports was linked to a simultaneous drop in the populations.

The perception of crocodiles in the country is such that despite the ratification of the Washington convention by Madagascar on 05 August 1975, which brought about the ban of all exports of crocodile skin products, it was not until 15 June 1988 that the crocodile was lifted from the problem animal category to be classed as game. Since 1985 Madagascar has once again been authorised through CITES to export crocodile skins, the populations having, from all accounts, increased since the international trade ban in 1975. Meanwhile, hunting has become quite uncontrollable and can only negate the management system already considered unsatisfactory for an animal such as the crocodile. Population surveys conducted between 1987 and 1988 (Behra & Hutton, 1988) showed the populations to be low compared with that of protected African rivers, or rivers exploited uniquely for their eggs. However, their numbers were relatively similar to those in rivers with considerable human settlement. It was then in 1989 that Madagascar asked for the assistance of the FAO to establish a project for the development of crocodile farming.

**FAO PROJECT FOR THE DEVELOPMENT OF CROCODILE FARMING**

At the end of 1989, the FAO financed an assistance project for the development of crocodile farming in Madagascar, following the request of that country’s government. The project leader was Olivier Behra with Ramandimbison acting as one of the two technicians required as part of the project format. The main goal of the project was to establish the feasibility of establishing a program for the development of crocodile farming. The project included the training of potential
crocodile farmers as well as officials from the Department of Water and Forests. At the same time suitable areas for crocodile egg collection were investigated as well as the initiation of a programme for the development of farming management techniques.

Given the international constraints and the intention to work towards a programme concerning the conservation of crocodiles, it was decided to concentrate on developing a ranching-biased programme which involved rural communities. A training programme for potential farmers on the subject of farming techniques (stressing the importance of having quality goods at the end of the day to market) was organised as well as set up surveys to locate areas suitable for nest collection.

The surveys were carried out continuing the work of Behra and then Behra and Hutton in very precise areas following a detailed analysis of the biogeography of the western region, considered to be the most interesting. The surveys revealed three zones of particular interest for the development of an egg collection system. Out of the dozen or so interested farmers, four finally embarked on farming projects and began building the infrastructure required.

Egg collection occurred in many different zones (also hatchling collection) but this report concentrates on the one specific area called Besalampy where special attention focussed on a study of local response to their possible involvement in egg collection.

In the three zones specified, the response from the locals was quite good with regard to their interest in the subsequent sale of crocodile eggs but Besalampy had the added advantage of being already designated a collection area by the Department of Eaux and Forets, crocodile farming having been established there since the start of the project, and thus presented the most value technically to this report. The farm manager, in one year, had succeeded in building a brick-housed farm with an incubator temperature controlled to half a degree and ponds heated with similar accuracy.

**BASALAMPY AREA**

Basilampy is situated in the extreme west of Madagascar in a relatively isolated area such that the road into the town is impassable for six months of the year. Being close to the sea (16°44' S, 44°29' E), the town is by the Maningoza River which comes from the south east and is then joined by the Sambao River before emptying into the ocean. These two rivers are surrounded by small lakes which have, without a doubt, made the region such good crocodile habitat. If the road is impassable for 6 months of the year it is in particular due to the major floods occurring during the wet season, although during the dry season these rivers become very shallow. The associated lakes therefore provide a good refuge for crocodiles during these extreme periods.

The small villages that occur around the rivers are for the most part small hamlets and the area is sparsely populated except for itinerant travellers. The climatic
difficulties and the isolation of the area make the region non-desirable for settlement, the agriculture practised there barely supplying the needs of the people for an entire year.

ORGANISATION OF EGG COLLECTION IN THE AREA OF BESALAMPY

The first collection organised in the region was a result of preparatory work carried out by Ramandimbison. Many people replied positively to this preliminary work assuring of their ability to locate nests and that they would be interested in the subsequent sale of the eggs. The collection itself was headed by Behra, aided by Ramandimbison and a technician from the farm in question (under construction) who was responsible for paying the locals involved.

Although the people responded favourably to the preliminary enquiries made by Ramandimbison, there was some disbelief concerning any follow-up that would ensue and, combined with their negative attitude towards crocodiles, they destroyed a considerable number of nests prior to the arrival of the collection team. The eggs were eaten or destroyed to prevent any increase in crocodile numbers - it was noted here, and elsewhere, that crocodile eggs are not traditionally eaten but living conditions had so deteriorated that certain groups no longer had any choice and ate whatever they could find.

Be that as it may, in less than eight days it was possible to collect more than 1000 eggs from locations that were not known by the team before the operation. Ramandimbison remained in the area the following week and was able to collect practically the same number of eggs. It was often the case that while the team went to look for the first couple of nests with a villager other people also went to look for other nests. For each nest found, the person who found it received 1000 Malgache francs (about 70c US at that time) per egg, a price calculated to make a clutch worth as much as that of an adult skin bought locally.

The eggs collected were placed in polystyrene boxes filled with vermiculite and carried by men to a vehicle and then along the tracks back to the town - a journey often lasting many hours. Usually arriving at the village every evening, the eggs were stored until a certain number of boxes had accumulated when they were collected by the farmer in a light aircraft (Cessna) and taken to the farm, where they were immediately incubated.

In the second season, a collector from the farm organised the egg collection and took only 1500 eggs, at the request of the farmer.

THE RESPONSE OF RURAL COMMUNITIES TO THEIR INVOLVEMENT IN CROCODILE EGG COLLECTION AFTER THE SECOND COLLECTION SEASON

The results presented here are the outcome of several days spent in the field by Ramandimbison. The locals who were questioned numbered only 12 in the Southern part and 24 in the North of the pilot site. Also, the questionnaire,
comprising forty questions, was put to the group upon their return and so the lack in certain opinions could lead one to consider following up this work with another psychological enquiry after the third collection season.

Be that as it may, the first replies are original and therefore the most interesting.

The questions to which answers were most sought after were principally the following:

a) are the people interested in crocodile egg collection?

b) are the people organised with regard to egg collection?

c) has the attitude of the people to crocodiles changed?

d) are the crocodiles still hunted? or the eggs destroyed?

e) is there indifferent protection from the locals for crocodiles?

f) what are the aspirations of the people for the future?

The results were different from the different sites of enquiry. However, it showed that the most positive results invariably came from the area where collection was the most important to the people and where the economic incentive was equally important.

a) On the subject of the interest of the people towards crocodile egg collection the response was undeniably positive. Indeed, the region was very poor and the economic returns poor due to the frequent dry spells and so the revenue generated from crocodile egg collection is often relatively high and allows for luxuries such as clothes, bedding, kitchen equipment and even carts or zebu in certain cases.

Although this is the general case, it sometimes happens that the man of the family (in the Southern region) is happy to spend his collection benefits himself outside of the village for his own pleasure.

It is interesting to note that although the man played the main part in the collection, women also participated and the benefits usually ended up within the family unit.

b) No structural programme for the collection was set up by the people and it was interesting to see if the local populations were actually able to set one up themselves.

This was not the case at all but the success was linked to the importance of the collection as well as the site in question.

The operation per se, however, was the same in each locality.
Each time that one of the villagers located a crocodile nest he went to the administrative head of the village to inform him. He, in turn took note of the name of this person and the approximate location of the nest and then registered the name, date and time of find on paper and went with that person to find the nest. The piece of paper was placed inside the nest. This removed any confusion regarding the "ownership" of the nest as it was thus ascribed to the first person who found it.

This system was organised according to a traditional hierarchal system. The administrative personnel in charge (the head of the village - given the title of "president of Fokontany" by the local administrator in charge) had his own personal interest in the scheme as he was given a certain percentage of the number of eggs found. This percentage (equivalent to 3 eggs per nest) was paid to him when the person locating the nest was in turn paid by the farmer/collector. The head of the village becomes a major part of the collection system and its local promotion thereof regarding the protection of the nest sites.

In the north of the country, the system was set up entirely by the locals and worked perfectly, even being accompanied by a relay system between the people of the villages or the surroundings to keep an eye on the site and prevent any outsiders from coming in to eat the eggs or xebu passing over the nests.

In the south the same system was attempted except that the results were not as encouraging. Some people did not declare the nests that they found so that they would not have to pay their fee to the head of Fokontany and one nest was even stolen and made to look as if it had been depredated.

However, this could be interpreted as a lack of surveillance due to a parallel lack in the number of nests available to suitably justify continual site surveillance.

Briefly, in the North a spontaneous organisation of the people by the people was witnessed which proved to work very well.

c) Except with those people for whom the crocodile was considered sacred in Madagascar, the general attitude of people towards crocodiles still remains a negative one, such as one can gather from certain naturalists like Perrier de la Bathie (1914) at the beginning of the century. Indeed in the summary of an interesting article on crocodiles, "... the Madagascan crocodile is not graceful, something which spoils the rivers of the island. Certainly the bulkiest entity of this land, with underhand manners, ferocious and with many victims being taken per year, it urgently demands that they be destroyed by any means possible". Perrier de la Bathie could add to this that on the other hand, the crocodile is an interesting animal and its eventual disappearance could be mentioned with a certain nostalgia, but for the Malgache in general and in particular those living in crocodile infested areas, there is, for the most part, nothing to add to those first statements of this naturalist.
Perrier de la Bathie already said in his article in 1914 that the Malgache did not understand that crocodile populations could be diminished by killing the adults.

The only result of killing big crocodiles is that the physical size of the population is decreased but not the number of crocodiles. The population actually increases because it creates more space for subadults. In the case of the area where the pilot study was conducted, it is interesting to note that the people there thought the same thing. However, they also believe that if the collection is carried out efficiently it will contribute to the decrease in numbers of crocodiles, or at least halt their augmentation.

This was particularly so in the North of the pilot study, where the locals, who normally looked for any possible way to get rid of crocodiles changed their attitude and, even if they are still a long way from actually loving these animals, they leave them to live in peace.

In the South, this is not exactly the case with those involved in egg collection. It is important to consider that in the surrounding area during the last year four people were injured by crocodiles and many zebu were killed.

d) It seems that there is practically no more hunting going on in the area but it is difficult to link this to collection because skin prices have dropped considerably and the locals are no longer motivated to hunt crocodiles.

If the actual price, offered locally, of 500 Fmg/cm belly width (about 30 cts/cm) were to rise above 1200 Fmg, it is possible that some hunters would begin hunting again. During the last egg collection season, it was still the case that those nests not collected were destroyed to stop the increase in crocodile numbers.

e) The main subject of the study was to see if there would be indifferent protection of the crocodiles at the end of the crocodile ranching programme. Even though those people in the South were evidently interested in egg collection they did not seem too concerned with the need to preserve the breeding stock.

In the North, at the pilot site, in contrast, it is undeniable that protection measures are there. They exist in the form of continual site monitoring to stop people from destroying the nests and also to prevent zebu from destroying the nest areas. In this area, protection of breeding stocks is a success story. This can be witnessed outside of the collection programme where local populations asked, spontaneously, if they could have an administrative authority to prevent zebu movement over the reproduction site as well as foreigners coming in to kill their crocodiles.

f) The expectations of rural populations regarding the ranching programme are relatively easy to understand and are, above all, to collect as many eggs as possible, to organise the collection a bit better so that those involved can be informed in advance of its structure and to increase the price to more than 1000 or 2000 Fmg (US $1.3) per egg.
CONCLUSION

Naturally, these results have to be looked at bearing in mind that this was a pilot study, and that the present economic situation of the crocodile industry might not make it replicable to other regions or countries. The most fundamental result is that an animal regarded as negatively as the crocodile is can be, due to its economic value, be considered by these peoples as a renewable resource belonging to the community.

It is even more fundamental to see that this system was set into action itself because it was decided during the setting up of the project to never talk about crocodile conservation.

This had the advantage of not putting the locals against the project and to really see if they can take the decision to preserve these problem animals for the economic purposes they represent.

Having private investors implicated in the collection, hatching, and rearing programme made the project more lasting. Indeed, the second collection was set up by the farmers themselves on the same principal of renumeration for the locals.

One cannot expect that a 15 month project can really lead to the setting up of a definite management programme for crocodile populations in a country as big as Madagascar that started with nothing. Problems remain to be solved, to develop and improve the programme to a higher level of importance in the country as well as reinforce management organisations.

Be that as it may, these results show that one can seriously consider the involvement of local communities in exploitative projects that are reasonable and lasting for wildlife and can be a more interesting means of protecting species and their habitat in a developing country.

Bibliographie:


BUTLER W. Harry, 1987; "Living with crocodiles" in the Northern Territory of Australia. in WILDLIFE MANAGEMENT: CROCODILES AND ALLIGATORS


LONG-TERM POPULATION STUDIES OF AMERICAN ALLIGATORS INHABITING A RESERVOIR: INITIAL RESPONSES TO WATER LEVEL DRAWDOWN

I. Lehr Brishin, Jr., J. Merlin Benner, Laura A. Brandt, Robert A. Kennamer and Thomas M. Murphy

Savannah River Ecology Laboratory
P.O. Drawer E
Aiken, South Carolina 29802, U.S.A.

ABSTRACT: A population of American alligators (*Alligator mississippiensis*) inhabiting a 1130 ha nuclear reactor cooling reservoir has been studied for more than 20 years, producing a database that now can be used to evaluate the responses of these animals to subsequent changes in their habitat. Beginning in June and continuing through September 1991, the water level in this reservoir was lowered 6m to allow for repair work to the dam. The study reported here extended from July 1991 through the summer of 1992, during which time the reservoir remained at the lowered level. The drawdown reduced the water surface area by 50%, exposing and killing the majority of the lake's submerged/emergent aquatic vegetation. Both during and immediately after drawdown activities, the number of alligators counted in the reservoir by night eyeshining techniques increased possibly as a result of increased visibility of smaller animals due to the lack of emergent vegetative cover. High numbers of alligators were also observed during aerial census flights during the spring following drawdown. Fourteen adult alligators outfitted with radio transmitters in September 1991 revealed differences in spatial distributions and movement patterns between the sexes during the fall and following winter in the drawdown reservoir. Males showed more extensive fall movements while most females tended to remain close to the locations where they were originally captured. There was no evidence that the drawdown adversely affected the winter survival of adult alligators in Par Pond. Six of the telemetered alligators spent the winter in moderately deep water along a <300m stretch of exposed reservoir shoreline. An additional female was found wintering with young in an extensive circular subterranean den system that remained dry throughout the winter due to the lowering of the water level. Six alligators (four males/two females) were recovered elsewhere in the area after having been marked or telemetered in Par Pond. Two of these alligators were later killed in smaller nearby impoundments, most likely by larger alligators residing in the habitats to which these emigrants had moved. Three nests initiated before drawdown activities all successfully hatched young. Despite the greater distances of these nests from the receded shoreline, all three females continued to tend these nests and subsequently, moved

1 Department of Wildlife and Range Sciences, University of Florida, Southwest Florida Research and Education Center, P.O. Drawer 5127, Immokalee Florida 33934, U.S.A.

2 South Carolina Department of Wildlife and Marine Resources, Rt.2, Box 167, Green Pond, South Carolina 29446, U.S.A.
as much as 100 m with their newly-hatched young into the lowered reservoir. Due to the lack of cover however, it is unlikely that many of these young survived. Unfavourable conditions for nesting, and habitat conditions that have undoubtedly resulted in low survival of juveniles, have probably been the most important impacts of the reservoir drawdown upon its resident alligator population.

INTRODUCTION

Man-made impoundments are becoming an increasingly abundant form of wetland habitat as natural lotic systems are altered for purposes of human industrial, recreational and/or irrigational needs. Crocodilian populations inhabiting such wetlands must either adapt to living in these new reservoir habitats, move elsewhere or perish. Although some populations are surviving in such impoundments (Alcala and Dy-Liacco 1989), little information is available concerning these animals’ population biology and productivity in these habitats. Particularly lacking is any information concerning the responses of such animals to the periodic lowering of water levels which is commonly required in multipurpose reservoirs.

Among the best-studied crocodilians utilizing a man-made reservoir are the American alligators (Alligator mississippiensis) inhabiting the 1130 ha Par Pond reactor cooling reservoir on the U.S. Department of Energy’s Savannah River Site (SRS) near Aiken, South Carolina, in the southeastern United States (Murphy 1977, 1981; Brisbin 1982; Brandt 1989, 1991). Throughout the over 20 years that the Par Pond alligator population has been studied, this reservoir was never subjected to drawdown activities, and the resultant stability of its water levels allowed the development of extensive beds of submergent/emergent aquatic vegetation, particularly in those portions of the lake within the ≤ 6 m depth contour (Parker et al. 1973; Smith et al. 1986). Between early July and mid-September 1991, however, the water level of Par Pond was lowered by approximately 6 m to allow for repair work to the reservoir’s retaining dam. This drawdown reduced the surface area of the reservoir by approximately 50% and exposed nearly all of the submergent/emergent vegetation along the lake’s margins. The reservoir has remained at this lowered level throughout this study (July 1991 through July 1992), leaving a bare shoreline, surrounded by approximately 526 ha of exposed mudflats which, during the spring of 1992, began to undergo terrestrial plant success in many areas.

Previous studies of the Par Pond alligators have revealed that the number of resident animals has more than doubled from an estimated 110 to 266 individuals from 1972-1978 to 1986-1988 (Murphy 1977, 1981; Brandt 1989, 1991). These same studies have shown that while the sex ratio has not changed during this period, the population’s age structure shifted strikingly from a high proportion (64%) of large adults in the 1970s to a high proportion (81%) of juveniles in the 1980s. As indicated by Brandt (1989, 1991), these changes have been accompanied by an increase in the reproductive output from an average of 2.3 to 4.0 nests per year during the same period, all being indicative of a healthy and growing population which at that time, had not yet reached its carrying capacity. There is now concern, however, that changes created by the reservoir drawdown of 1991 might reduce the reservoir’s suitability for alligators, particularly juveniles as a result of exposure and destruction of submergent/emergent vegetation along the lake’s margins.
The study reported here was designed to document the initial responses of Par Pond alligators to the drawdown of Par Pond. By using census procedures and other techniques similar to those employed in earlier studies of this population and by taking advantage of the numerous individuals in the population that had been previously marked, an effort was made to present the responses observed in the context of previous information available for this population (Murphy 1977, 1981; Brandt 1989, 1991). Research efforts were focussed on three areas: (1) population numbers and spatial distribution, using standardized census techniques, (2) behaviour and movement patterns of individuals within the population, using radio telemetry techniques, and (3) reproductive biology. With the exception of aerial census surveys which continued through July 1992, all aspects of the study reported here were conducted between July 1991 and March 1992.

The SRS is located along the northwesternmost limits of the alligators' inland range in the southeastern United States, and this study provided an opportunity to document various aspects of the alligators' post-drawdown wintering ecology, and to present a comparison with the results of earlier pre-drawdown studies of the wintering ecology of alligators in this same reservoir system (Brisbin et al. 1982).

MATERIALS AND METHODS

Study area:

The Par Pond reservoir is located on the U.S. Department of Energy's Savannah River Site (SRS). This 750 km² site was closed to public access in the early 1950s and since that time has been used for various nuclear industrial activities. The SRS is located along the northern shore of the Savannah River and occupies portions of Aiken, Allendale and Barnwell Counties of South Carolina. The area is located in the Upper Atlantic Coastal Plain. Brisbin et al. (1982) report that winter temperatures in this area averaged 4.9, 4.6 and 4.9°C for December, January and February, respectively, for the period 1971-1981. Extreme lows for these same months during this period were -8.9, -15.6 and -10.0°C, respectively. Further descriptions of the climate, topography, flora and fauna of the SRS have been provided by Jenkins and Provost (1964), Murphy (1981) and Hillestad and Bennett (1982).

The Par Pond reservoir was constructed in 1958 by impounding an area that included the confluence of several natural stream watercourses. This created a reservoir with three major extensions which have become known as the Hot Arm, North Arm and West Arm (Figure 1). The Par Pond reservoir system also includes two smaller reservoirs; Pond B (81 ha) and Pond C (67 ha), which have, along with Par Pond itself, received the cooling water effluents of one or two operating nuclear reactors. The thermal gradients and early history of reactor operations at the site have been described by Parker et al. (1973), Gibbons and Sharitz (1974) and Brandt (1989), and the responses of Par Pond alligators to these thermal inputs have been described by Murphy (1977, 1981) and Murphy and Brisbin (1974). All thermal input to the Par Pond system ceased in August 1987, and both of the associated reactors have been inoperative since that time.
Night Eyeshine Counts and Aerial Census Surveys:

Night eyeshine counts and aerial census surveys were designed to incorporate, as much as possible, the same techniques used by Murphy (1977, 1981) and Brandt (1989, 1991) in determining pre-drawdown population numbers of alligators in Par Pond. Briefly, eyeshine counts were conducted from an airboat on nights with reduced wind and wave action in order to maximize alligator visibility, with the entire periphery of the reservoir (initially 53 km but then later reduced as the drawdown progressed) being surveyed during each census. Night eyeshine counts were conducted on 3, 8 and 29 July, 26 August, 24 September and 23 October, 1991. Aerial census surveys were conducted from a fixed-wing aircraft flown at a speed of 130 knots at an altitude of about 90 m. Again, the entire periphery of the reservoir was surveyed on each aerial census, with flights being conducted on 11 July, 12 September, and 17 and 25 October in 1991, and on 9, 17 and 25 March, 22 April, 12 and 19 May, 9 and 30 June, and 3 July in 1992. Discussions of sources of bias and assumptions that must be made or met in the design of night eyeshine counts and aerial census surveys are provided by Woodward and Marion (1978) and Caughley (1974), respectively.

None of the surveys conducted during the present study produced estimates of actual population size either during or after the drawdown of the reservoir. However, both night eyeshine counts and daytime aerial surveys can estimate the minimum numbers of alligators present, and if certain assumptions concerning the probability of sighting of individuals are made or can be discounted, information from such counts can be used as indices of population size.

Capture and Radiotelemetry:

Adult alligators were captured for outfitting with radiotransmitters using a modified version of baited trip snares (Murphy and Fendley, 1975; Murphy et al. 1983) that were set along the receding edge of Par Pond during and shortly after the cessation of drawdown activities. Snares were set for a total of five nights and involved a total of 44 trap nights. These sets resulted in the capture of 15 adult alligators (trap success = 34.1%). Nine males were captured in snares in the North Arm between 28-29 September 1991 (Figure 2). Each was measured, equipped with a radio transmitter and released at the site of capture. The snares were then moved in order to achieve more complete coverage of the reservoir's shoreline. This resulted in the capture of four additional females on 7-8 October 1991 (Figure 3). These females were also equipped with radio transmitters and released, as was a fifth female that had been captured from a boat with a snare pole in the Hot Arm on 19 September 1991. Two additional adult males captured in snares in the West Arm were marked by notching tail scutes (Brandt 1989) and released without transmitters. The nine males equipped with transmitters ranged from 2.41 - 3.56 m in total length while the five females ranged from 1.91 - 2.50 m.

Radiotransmitters weighing less than 250g were attached with 270 lb test stainless-steel leader line to the dorsal nuchal scutes. Attempts were made to determine the locations of all alligators on 4, 9, 18 and 31 October, 8 and 19 November, 13, 23 and 30 December in 1991, and on 15 January, 7 and 19 February and 12 and 26 March in 1992, producing a total of 158 locations of individual animals. Transmitter-equipped alligators that left the reservoir were located at more frequent intervals to better determine the extent of their excursions and fates. Radio locations were determined with a hand-held antenna from a small boat or airboat or from the shore. Although visual observations were occasionally
made of transmitter-equipped animals, most of the locations were determined for submerged alligators by recording the position directly above the point of vertical exit of the strongest radio signal from the water column. In a few cases, particularly in the case of animals which left the reservoir, it was necessary to estimate locations by visual triangulation. However it was usually possible to plot individual locations with an accuracy of approximately ±10m.

In addition to the adults equipped with radio transmitters, four smaller alligators were captured by hand or with snare poles using techniques described by Chabreck (1963) and Brandt (1989, 1991). These animals were captured between 18-20 July 1991, and were fitted with coloured plastic collars to permit later visual identification. Resightings of these additional marked animals were used to further document alligator movement within and emigration from the drawdown reservoir. Recaptures of alligators marked in previous studies (Murphy 1977, 1981; Brandt 1989, 1991) were identified by tail scute notches (Brandt 1989).

Reproductive Studies:

Nests were located during the summer of 1991 by visiting areas of known past nesting and searching the reservoir shoreline by boat and foot. Once located, nests were visited at approximately bimonthly or, when possible, weekly intervals to determine hatching success and the subsequent fate of the young.

RESULTS AND DISCUSSION

Population Numbers:

Eyeshine counts conducted after the initiation of the drawdown (Figure 4), were higher than those reported for the same months in 1988 by Brandt (1989; Figure 4). This may have resulted from the continued increase in the population, as documented by that study and/or may have been due to an increase in the animals' visibility along the lake's shoreline which was now devoid of vegetative cover. The same factors could also have contributed to an increase in the number of alligators seen on aerial survey flights during and shortly after drawdown (July-November 1991), as compared to the number counted during these same months in previous years (Figure 5; Brandt 1989). A sharp decline in numbers of alligators seen on night eyeshine surveys between late July and mid-September 1991, occurred during a period when eyeshine counts recorded in previous years were either constant or slightly increasing (Figure 4). This decline could not have been an artifact related to the loss of shoreline vegetation and instead, may have reflected the beginning of emigration of alligators from the reservoir as will be discussed later.

Analyses of night eyeshine count data indicated that the distribution of alligators in the reservoir two weeks after the initiation of drawdown was significantly different than expected based on the area of water available in each arm ($X^2 = 11.07, p<0.05, df=3$; Table 1). There were fewer animals observed in the Main Lake than expected and more in the Hot Arm. By October 1991, the distribution had shifted, with more animals in the West Arm than expected and fewer in the Main Lake ($X^2 = 25.95, p<0.05, df=3$). As will be shown later, these results were further supported by the movements of several radio telemetered alligators that had been captured elsewhere in the reservoir but by late October, had moved into the West Arm where a winter concentration area was subsequently
discovered (Figures 2 and 3). The October 1991 increase in the percentage of eyeshine counts in the West Arm contrasts with the findings of Murphy (1977) who found the percentage of alligators in the West Arm to decrease from September through October of 1972-1973. In the latter case, however, this response was shown to be related to the increasing use of Par Pond's Hot Arm, through the fall and winter months, in response to the introduction there of heated reactor effluents. The distribution of alligators throughout Par Pond in 1991 also contrasted sharply with the findings of Brandt (1989) whose data showed a concentration of animals in the Main Lake in 1987 and relatively low use of the reservoir's arms. In 1991 however, the arms were preferred and use of the Main Lake was disproportionally low (Table 1).

Reproduction:

Three nests were located at Par Pond during 1991. All were in close proximity to if not exactly at nest sites from previous years. By the end of August all of these nests were at least 100m from the lowered shoreline of the reservoir. In each case, the females remained in attendance and all nests hatched even though in one case the female had to move the hatchlings 150m to the water. A total of 44 hatchlings was marked from two nests. No hatchlings were marked from the third nest, but at least eight were later observed along the shoreline.

In one case the hatchlings were found in a shallow pool adjacent to what may have been a den. These animals may have survived the winter because of the shelter provided by such a den. In the other two cases, the hatchlings were found along the shoreline in areas with no vegetation and very little cover. It is unlikely that many of these animals survived. As yet unpublished studies of the avian community of Par Pond have shown marked increases in the numbers of wading birds at the reservoir since the drawdown (Keith Bildstein, pers. comm.), and these birds along with larger alligators and large-mouthed bass (*Micropterus salmoides*), that are also abundant in Par Pond (Gibbons and Sharitz 1974), would represent significant sources of predation upon hatchling alligators inhabiting such exposed shorelines.

Movements and Distribution:

The initial capture locations and subsequent movements of the nine male and five female adult alligators equipped with radio transmitters are shown in Figures 2 and 3, respectively. The distributions of the sexes differed markedly throughout the reservoir in September/October when initial captures were made. All alligators captured by trip snares in the reservoir's North Arm were males, while four out of the five females captured were taken in the West Arm. Later in October, the males that had been captured in the North Arm showed considerable movement, with two moving as far as the West Arm and two leaving the reservoir itself. However, only one of the females showed any movement between regions of the reservoir. This female was captured near the west end of the retaining dam in the West Arm and later moved the entire length of the reservoir to the upper reaches of the North Arm where it later spent the winter. By October, the three females that had been captured in the West Arm began to concentrate, along with a radio-telemetered male from the North Arm, in a limited portion of the West Arm where they would later spend the winter.

With the onset of colder weather in December-January, all long-distance movements of the radio-telemetered alligators ceased, and their distribution
within the reservoir was typified by that shown in early February (Figures 2 and 3). At this time, nearly half (6/13) of the alligators equipped with radio transmitters were located in open water along a <300m stretch of south-facing shoreline bordering a narrow portion of the West Arm. The six telemetered alligators using this winter concentration area were equally divided between the sexes, with the three males having all been originally captured in the North Arm. Two other telemetered males wintered at the northwestern-most extreme of the Hot Arm where earlier studies (Murphy 1977, 1981; Murphy and Brishin 1974) showed concentrations of larger males to have occurred prior to 1987, when nuclear reactor effluents maintained elevated water temperatures at this location.

Radio-tracking studies were terminated in late March/early April. At this time, despite the arrival of warmer weather, the females still had not moved from their winter locations, and all but one remained in the same general area of the reservoir where they had been captured (Figure 3). Their behaviour in this regard was quite similar to that reported by Goodwin and Marion (1979) whose radio telemetry studies showed that the wintering locations of alligators inhabiting a Florida lake were generally a more limited subset of their ranges during warmer months.

With the arrival of warmer weather in March, some of the telemetered males began to show increased movements throughout the reservoir. Two of these males, one of which wintered in the North Arm near where it had been captured and the other from the West Arm winter concentration area, respectively showed mid-winter and March forays into the Hot Arm. In each case, the animal returned thereafter to its former wintering site. This behaviour was similar to that described before the reservoir drawdown by Murphy (1977) who also observed forays by radio-telemetered males between their wintering sites and other parts of the reservoir in late winter/early spring, with the animals similarly returning to their wintering sites afterwards. In the present study however, the forays were exactly the reverse of those described earlier since in the latter case (Murphy 1977) the wintering sites had been located in the Hot Arm and spring forays were made to-and-from the West Arm instead of vice-versa. However, this reversal of seasonal movement patterns might well have been due to the cessation of the input of thermal effluent to the Hot Arm rather than being a consequence of the reservoir drawdown per se.

Emigration and Mortality:

Since initiation of the reservoir drawdown, six alligators (four males and two females) have been documented as having moved away from Par Pond proper, after having been previously marked in that reservoir (Table 2; Figure 6). In three of these cases (alligators D, E and F, Table 2) it could not be conclusively shown that the movements actually resulted from the reservoir's drawdown since these individuals were marked several years before the water level was lowered. In only one case did the departing individual return to Par Pond (alligator C, Table 2; Figure 6). Two of the emigrating alligators were found dead in nearby reservoirs (Pond B and Pond C) to which they had moved (Table 2; Figure 6). Both of these smaller impoundments are known to have several resident adult alligators (Murphy 1981), some of which were undoubtedly larger than the emigrants from Par Pond. In both cases, the dead animals showed signs of having been savagely attacked by another larger alligator. Limbs, and in one case the entire alligator's head, were torn from these animals; bodies (Table 2), and although both carcasses were torn.
in many places, there was no evidence that either animal had been consumed by the attacker. While it cannot be shown that these alligators did not die from natural causes, it would seem very unlikely that resident alligators would have so violently attacked the already dead carcasses of these two animals without the intention of feeding upon them to some extent. Intraspecific aggression resulting in death of one of the combatants is well-known in a number of species of crocodilians including the American alligator especially in the case of territorial males (Lang 1989; Pooley and Ross 1989). Female-female territorial aggression has also been recorded by Pooley and Ross (1989), particularly during the breeding/nesting season that included the period when the adult female emigrant alligator was found dead in Pond B (Table 2). No deaths of resident alligators were recorded in any of the wetlands surrounding Par Pond during the course of this study. These considerations suggest that one of the likely effects of the Par Pond drawdown has been to cause an increase in the mortality of adult alligators of both sexes that emigrated from the shrinking reservoir and were subsequently killed in aggressive encounters with resident alligators in nearby habitats to which they had moved.

Only one alligator death was recorded in Par Pond during the course of this study. A juvenile alligator measuring 0.96m in total length was found in a torpid state on 18 February 1991 on the mudflats. This animal was located 115m to the east of the entrance of a winter den, as will be described later (Figures 6 and 7), and was found on the edge of a small pool (5m diameter) in the mudflat, that had the appearance of having been excavated by the actions of a larger alligator. This juvenile was considerably larger than any of the young that had been observed in the den but was very thin and missing the distal portions of both forelimbs which appeared to have been amputated in a struggle with a conspecific or some other predator. This juvenile was returned to the laboratory for further observation where it proved active and alert. It was marked and released at the site of capture two days later and was not seen again until it was found dead at the same location on 27 March 1991. The discovery of an alligator of this small size in the open, during the winter months, is an unusual occurrence at Par Pond and suggests the possibility of stress-induced winter movement related to the presently lowered water level in the animal's habitat.

The cause of the observed emigrations was likely conspecific aggression which undoubtedly increased as the falling waters reduced the sizes of territories available to resident animals of Par Pond. Twice as many males as females were documented as leaving Par Pond and it is indeed the males which would be expected to show the greatest increase in conspecific territorial aggression as the reservoir was drawn down. An extended aggressive encounter between two large alligators was observed in shallow water along the eastern shore of the Main Lake in mid-September 1991 (F.W. Whicker, pers.comm.). This encounter was the first of its kind ever recorded for the Par Pond alligator population and involved biting, rolling and tailslapping, but neither combatant was apparently seriously injured.

Wintering Ecology:

The American alligator has been reported to make frequent use of den structures during the winter months to provide protection from low temperature extremes. The use of such dens, that are usually located either in shallow water or at the water’s edge with submerged entrances, has been reported from throughout the species’ range, including Florida (Goodwin and Marion 1979), Texas (Kellogg 1929), Louisiana (McIlhenny 1935) and North Carolina (Hagan et al. 1983).
However the use of such winter dens has never been documented in any of the previous studies of Par Pond alligators (Murphy 1977, 1981; Brisbin et al. 1982; Brandl 1989, 1991). Detailed descriptions of the behavior of alligators during cold winter weather in this reservoir system by Brisbin et al. (1982) rather have shown adult alligators to submerge in either shallow water in the reservoir's coves or along steeply-sloping bottom contours near deeper parts of the lake, where they likely exhibit the "icing behavior" described by Hagan et al. (1983) during periods of particularly low temperatures.

On 28 January, 1992 however, an adult alligator was observed inside an extensive winter den that was located at what, before the drawdown, had been the water's edge of a small cove along the eastern shore of Par Pond's Main Lake (Figure 6). Since only the head and forequarters of this alligator could be seen extending from one of the distant branching tunnels of the den (Figure 7), its length could only be estimated as being approximately 1.5-2.5m. This alligator was presumed to be a female that was known to inhabit and nest in this particular cove. Further support for the identification of the den as alligator as being this female was provided during subsequent exploration of the den on 10 February, 1992 at which time a group of at least four small juveniles was discovered in a side chamber of the den, approximately 1.0-1.5m from where the adult alligator (which was not seen at this time) had been previously located (Figure 7). The size of the juveniles suggested that they probably had hatched in the fall of 1990 at a time when the entrance and much of the entryway of this den had almost certainly been underwater.

The presence of water in winter dens has been thought to provide alligators with important thermal buffering during periods of cold temperature (Spotila et al. 1972; Hagan et al. 1983). The possibility that the drawdown of Par Pond might result in cold temperature stress to the juveniles and/or the adult alligator in this now dry winter nursery den was therefore examined by monitoring it with three temperature probes: (1) 1.0m inside the den entrance, (2) 5.0m further inside the den near the point where the juveniles had been located, and (3) 3.0m outside the den entrance at an elevation of 1.0m above the dry lake bed (Figure 7). These three probes recorded temperatures (±0.01°C) every 30 min from 18 February through 22 April 1992. During this period, temperatures outside the den showed much higher variability (CV =63.4%) than did temperatures inside the den entrance (CV=29.0%), which in turn were significantly more variable than temperatures further inside the den near the brood chamber (CV=10.6%; F=5.37; df=2738, 2830; p<0.01). Even on days when outside air temperatures fell below -5°C and varied throughout the day by nearly 25°C, inside den temperatures varied by less than 2.0°C and were at times more than 15°C warmer than the outside air temperatures (eg. 13-14 March 1992; Figure 7). The dates for which den temperature profiles are provided in Figure 7 were among the coldest recorded during the period that the probes were in place at the den. Even so, temperatures within the den where both the adult and juveniles were seen remained well above the accepted lower limit of body temperature for this species (5°C; Brisbin et al. 1982). Although the den temperatures were considerably below the species' preferred body temperature of 32-33°C (Colbert et al. 1946), the ability of a den such as described in this study to function as a blackbody cavity would indicate that alligators within it, regardless of their body sizes, should all be well within the limits of their "climate space" (sensu Spotila et al. 1972), and that access to water under such conditions should not be necessary for thermoregulatory purposes. At some point during the winter, however, access
to water still might be necessary to prevent dehydration/dessication - especially in the case of juveniles.

Exploration of the winter den by crawling through its tunnels, revealed it to consist of a circular main tunnel enclosing an area approximately 6-8 m in diameter (Figure 7). Three side tunnels branched from the main tunnel, one of which was too small in diameter to be explored. The den system included two main chambers: (1) a smaller chamber of a little less than 1.0 m in diameter, where the juveniles were seen, and (2) a larger chamber measuring 1.5-2.0 m in diameter and about 1.0 m in height. The larger chamber also contained a small amount of pine litter, but it could not be determined whether this material had any relationship to the use of this den by alligators and no alligators were seen in the den during its exploration on 16 July 1992. The den's tunnel system represented a total length of about 24 m, with a typical cross-section of the main tunnel measuring 30-40 cm in height by 70-120 cm in width. The tunnel was roughly oval in shape with a flattened bottom. Chen et al. (1990) described a similar shape for the cross-section of a tunnel from the den of a Chinese alligator (Alligator sinensis). Although these authors describe the construction and use of elaborate den/tunnel systems by the Chinese species, until the present study, there had been no evidence that the American species ever constructed subterranean dens with a comparable degree of complexity.

Chen et al. (1993) indicate that the size and complexity of the Chinese alligator's burrow vary with age and sex, with those of females being more complex. Both the cross-sectional size and length of the Par Pond burrow were within the range of sizes given by these authors for the burrows of adult Chinese alligators whose tunnels are 33-36 cm high by 39-60 cm wide and which are between 10-25 m in length. Like the dens described by Chen et al. (1990) for the Chinese alligator, the Par Pond den also had two entrances that were located in a south-facing, thickly vegetated vertical embankment near (what had been) the water's edge. These authors also describe small diversionary side chambers for young, located at the point of bifurcation of den tunnels, which is exactly the configuration of the chamber containing young in this study (Figure 7). Chen et al. (1990) also describe the presence of a "sleeping platform," water pool and air holes opening to the surface in the den systems of Chinese alligators. While there was a small hole in the roof of the easternmost side tunnel of the Par Pond den (Figure 7), there was no evidence that this structure had been purposely constructed by the alligator. The absence of water from the Par Pond den prevented a determination of which if any portion of the tunnel system or chambers might have contained water when the den was originally constructed. The entire Par Pond den system was generally less than 10-20 cm below the surface of the ground - considerably less than the 1.0-1.8 m depth reported by Chen et al. (1990) for the den of the Chinese alligator.

With the exception of the adult found in the den described above, all other alligators observed at Par Pond remained in the reservoir's open water during the winter months. Although few visual observations were recorded during the winter, all of the telemetered alligators spent the colder months in locations that made it extremely unlikely that any den use was taking place. All of the animals were found in areas that until only recently had been covered by a depth of 6-8 m of open water, and the single observation of den use described above as well as other previous studies all indicate that when winter dens are used by alligators of either species, they are always constructed either at the water's edge or in relatively shallow water (< 2 m), thus allowing the occupant easy access to the...
surface to breathe (Kellogg 1929; Melhenny 1935; Chabreck 1966; Goodwin and Marlon 1979; Hagan et al. 1983; Chen et al. 1990). Winter locations of telemetered alligators monitored in this study were usually in the water adjacent to the now bare shoreline of the lowered reservoir and any evidence of den construction on or near the water's edge would have been obvious.

The winter habitat chosen by these adult alligators was quite similar to that used by a large adult (total length = 2.77 m) male alligator which was studied by Brisbin et al. (1982) in the Pond B reservoir in 1977. As described by these authors, this individual endured winter air and water temperatures as low as 0.3 and 4.0°C, respectively, while positioned approximately 2 m offshore along a bare unvegetated portion of that reservoir's shoreline. This alligator was oriented perpendicular to the reservoir's shoreline and rested on steeply sloping unvegetated bottom sediments in water that ranged from 0.80-2.00 m in depth from the alligator's head to its tail, respectively.

The general characteristics of the reservoir shoreline and bottom contour of the West Arm location where six of the 13 telemetered alligators spent the winter months in close proximity to one another during the present study (Figures 2 and 3), were strikingly similar to those of the habitat chosen by the alligator studied by Brisbin et al. (1982), as described above. Brisbin et al. (1982) described how behavioral adjustments in the position of the alligator they studied apparently allowed that animal to utilize the deeper waters of the reservoir as a heat source for thermoregulation during cold weather, and although such behavior was never observed for any of the alligators monitored in the present study, the microhabitat conditions chosen by all of these animals would have allowed such winter thermoregulatory behavior to still take place despite the drawdown state of the reservoir. Although the winter of 1991-1992 was generally milder than most in this region, the survival of all 13 telemetered alligators from November 1991 through the spring of 1992 suggests that the drawdown of the reservoir was unlikely to have affected the winter survival of adults in this population.

Conclusions/Management Implications:

Both night eyeshine counts and aerial census surveys suggest that a considerable number of adult alligators have remained in the Par Pond reservoir despite its present lowered water levels (Figures 4 and 5). These alligators have most likely subsisted on an increasingly vulnerable food base including birds, turtles, fish and other prey species that no longer have the benefit of protective vegetative cover along the lake's margins. How long this prey base will continue to persist under these conditions however, is currently not known, and social stress/cannibalism will almost certainly increase if prey resources decline, as would be inevitable if the reservoir is not refilled within the following year.

Despite the number of alligators still present in the reservoir, this study has shown that a number of adults of both sexes have already emigrated from the Par Pond population and that this has resulted in the deaths of at least some of these individuals (Table 2). This will result in a net decrease in the overall breeding population of alligators on the SRS as a whole. The deaths of some smaller males (eg. alligator B, Table 2) in this manner might not have a significant impact on future population productivity on the site. However the loss of large adult females (eg. alligator D, Table 2) through such emigration and territorial conflict would almost certainly have a negative impact on the population's reproductive output. The female killed in Pond B for example, represented one of the largest
size classes recorded for females from Par Pond (Murphy 1977; 1981; Brandt 1989), and Joanen (1969) has reported a positive correlation between body size and reproductive output (clutch size) in this species. Nevertheless, if the reservoir is refilled in the near future and proper nesting habitat is reestablished, a population of large breeding adults should still be present.

The emigration of large adult alligators following the drawdown of Par Pond also has important implications for the safety of personnel working in the vicinity of this reservoir. By leaving Par Pond and moving elsewhere in the area, emigrant alligators increase the likelihood that they will come to reside in locations where contacts with site personnel will be more frequent. Just such a situation occurred in the case of the largest male that emigrated from Par Pond in this study (alligator F, Table 2). After residing in Par Pond for a number of years, this individual left the reservoir and began to frequent the vicinity of a construction site below the retaining dam, where its aggressive actions toward workers at that location required its subsequent capture and "harassment" (through radio transmitter attachment by researchers). This action resulted in the animal's moving further downstream out of the construction area, to a point where its contact with site personnel has now been eliminated and yet the animal's movement can continue to be monitored/assessed from a safety point of view.

The drawdown of the Par Pond reservoir evidently had little effect on the ability of its remaining resident adult alligators to survive the winter months. The winter survival of smaller alligators, particularly very young juveniles, in this population is less certain. The observations reported here indicate that at least some groups of young spent the winter with their mothers in subterranean dens although these dens no longer contained water as a result of the drawdown. Even in the case of the elaborate den reported here however, it is not known whether the group of young observed underground in February survived for the remainder of the winter months. In any case, female alligators in the Par Pond population appear to be quite adaptable in caring for their nests and young, even under the drastically altered environmental conditions produced by the drawdown.

Despite the extraordinary efforts of females that tended nests at Par Pond in the summer of 1991, it is unlikely that many hatchling alligators from that year survived for long in the lowered reservoir with its almost complete lack of vegetative shoreline cover. Although some hatchlings may have been moved by their mothers to other wetlands nearby, there are now probably few if any small alligators still living in the reservoir itself. Furthermore, as the water level continues to be held at its lowered level, habitat conditions in those areas previously used for nesting by the reservoir's alligators, will remain unsuitable for this purpose in the future, as the result of the loss of extensive stands of shoreline vegetation. This suggests that the reservoir's alligator population will likely experience a second consecutive year of almost complete breeding failure, with still additional years of failure to follow if the reservoir is not refilled. This threat to both present and future reproductive output is probably the most important single source of impact of the Par Pond drawdown upon its resident alligator population, and if continued through time, it could have the effect of "setting back" this population's numbers and age structure to those which characterized it in earlier years, as described by Murphy (1977, 1981). To whatever degree this may prove to be the case, the information provided by the long history of previous studies of these animals should be a valuable asset in interpreting the importance of future changes in this reservoir and its resident alligator population.
ACKNOWLEDGMENTS

This work was supported by a contract (DE-AC09-76SR00819) between the University of Georgia and the United States Department of Energy, and by a subcontract (RR267-015/33436913) with the University of Florida. Logistic support and encouragement were provided by William D. McCort. Critical readings and/or helpful suggestions were contributed by J. Whitfield Gibbons, Ronald Chesser, Peter Consolie, Nat Frazer, John J. Mayer, Tony Tucker and F. Ward Whicker. Field assistance was provided by Antonio Aponte, Larry Bryan, Mark Dodd, Warren and Walter Stephens, David Unger and Howard Zippler. The extraordinary "speaking" efforts of N. Tod Densmore and Danny L. Stengler were particularly important in allowing us to map the underground alligator den without destroying it by digging. Discovery and documentation of the winter-denned female alligator resulted from the determination and persistence of Michael Gibbons, over and above the efforts normally expected on an undergraduate field trip in herpetology!

LITERATURE CITED


Table 1. Distribution of alligators in the Pre Pond Reservoir in 1987 and during/after the lowering of the reservoir's water level by 6′ from June - September 1991.

<table>
<thead>
<tr>
<th>Region</th>
<th>Pre-drawdown</th>
<th>Post-drawdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area (ha)</td>
<td>Number of Alligators</td>
<td>Number of Alligators</td>
</tr>
<tr>
<td>West Arm</td>
<td>20 (33.2)</td>
<td>6 (16.3)</td>
</tr>
<tr>
<td>Hot Arm</td>
<td>12 (20.0)</td>
<td>6 (14.7)</td>
</tr>
<tr>
<td>North Arm</td>
<td>36 (40.0)</td>
<td>4 (11.6)</td>
</tr>
<tr>
<td>Mean Lake</td>
<td>7 (11.7)</td>
<td>10 (15.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>1987</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>October</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 2. Characteristics and Ranges of Alligators Marked or Outfitted with Radio Transmitters in the Par Pond Reservoir and Southwestern Par Pond

<table>
<thead>
<tr>
<th>Alligator (sex)</th>
<th>Comments</th>
<th>Ranges/Recovery</th>
<th>Sightings/Recovery</th>
<th>In Par Pond (m)</th>
<th>Length (m)</th>
<th>Total (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (male)</td>
<td>Residues several times</td>
<td>Reservoir (B2)</td>
<td>18 Sep. 1992; North</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (male)</td>
<td>Outfitted with a radio</td>
<td>Arm of par pond (C1)</td>
<td>9-10 Oct. 1991; North</td>
<td>2.33</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>D (female)</td>
<td>Head and both parts of attack by</td>
<td>Arm of par pond (D2)</td>
<td>27 June 1992; West</td>
<td>2.424</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>E (male)</td>
<td>Head and both sides of body</td>
<td>Arm of par pond (E1)</td>
<td>20 May 1993; West</td>
<td>1.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For alligators marked or outfitted with radio transmitters in the Par Pond Reservoir and southwestern Par Pond:

- Filled sides marked.
- Reservoir identified by aerial surveys at the take.穴ake.
- Outfitted with study tags.

*Note: Alligator ranges and recovery data provided for reference. Additional details and specifications may be found in the table entries.*
Table 2 (contd)

<table>
<thead>
<tr>
<th>Per Pond Dam</th>
<th>Per Pond Female</th>
<th>Per Pond Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eluding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: These codes correspond to locations indicated on Figure 6.
Figure 1. Map of the Par Pond reservoir and the associated Pond B and Pond C reservoirs on the U.S. Department of Energy's Savannah River Site. White lines divide Par Pond into the named regions for purposes of analysis of alligator distribution. Blackened areas indicate open water and shaded grey areas indicate mudflats exposed following the lowering of the Par Pond water level by 8 m from June - September 1991.
Figure 2. Seasonal changes in the distribution of nine radio telemetered adult male alligators captured in the Par Pond reservoir between 27-29 September 1991. Open circles represent the location of a single individual, and other symbols and regions of the reservoir system are as indicated in Figure 1. Not every individual could be located on each day, and the male that moved to Pond C was found dead on 18 October 1991 (see text).
Figure 3. Seasonal changes in the distribution of five radio telemetered adult female alligators captured in the Par Pond reservoir between 19 September and 8 October 1991. Open circles represent the location of a single individual, and other symbols and regions of the reservoir system are as indicated in Figure 1.
Figure 4. Number of alligators seen on the Par Pond reservoir during night eyeshine counts before, during and immediately after reservoir drawdown that occurred between June and September 1991, with the water level then continuing to be held at its lowered state. Data for 1972 and 1987 are from Murphy (1977) and Brandt (1989), respectively. Each point plotted for 1972 and 1991 represents the results of a single eyeshine count, while each point plotted for 1987 represents the mean of 3-4 counts that were conducted within a weekly period (Brandt, 1989.)
Figure 5. Number of alligators counted on aerial survey flights over the Far Pond reservoir before, during and after reservoir drawdown that occurred between June and September 1991, with the water level then continuing to be held at its lowered state. Each point represents the results of a single survey flight; data from 1987-1988 are from Brandt (1989).
Figure 7. (Top) Diagrammatic representation of an overhead view of a subterranean winter alligator den at the Par Pond reservoir (Figure 6). Circled letters A and J indicate the points at which an adult and juvenile alligators were observed on 29 January and 18 February 1995, respectively. Locations indicated by the square-enclosed letters O, E, and D represent the locations where constant-recording temperature probes were placed outside the den, within the den entrance, and inside the den itself, respectively. (Bottom) Changes in the temperatures recorded during a 24-hour period on 13-14 March 1995 at the winter alligator den pictured above. Temperature records for the den, entrance, and outside were recorded at locations indicated in the diagram above by the square-enclosed letters D, R, and O, respectively.

Figure 8. Locations of three alligator nests (circled stars), a winter den (circled solid circle) and capture and recovery/sighting locations of individual alligators that were known to have emigrated from the Par Pond reservoir. Symbols A1, B1, C1, D1, E1 and F1 indicate the last known points of capture or sighting within Par Pond for alligators A through F in Table 2, respectively. Symbols A2, B2, C2, D2 and F2 indicate the last known points of sighting or recovery of the same individuals after having emigrated from the reservoir. The emigration of individual E2 is not shown, being 15 km to the southwest of Par Pond. Double arrows indicate that Individual C returned to Par Pond after emigration, and crosses indicate locations where individuals B and D were found dead.
GROWTH RATE OF CAIMAN (*Caiman crocodilus yacare*) IN THE PANTANAL WETLAND, BRAZIL.


* Laboratorio de Vida Selvagem, EMBRAPA/Centro de Pesquisa Agropecuaria do Pantanal, CxP 109, 79300, Corumba, MS, Brazil

** Box 13, Wofford College, Spartanburg, South Carolina 29303, USA.

Growth rate of Caiman (*Caiman crocodilus yacare*) was studied at Nhumirim ranch, southern Pantanal, Brazil. Animals were captured or recaptured from January 1987 to September 1990. The integrated form of Von Bertalanffy's model was used to derive growth parameters. Effects of rainfall, sex, year of capture and site on growth rates of small (< 25 SVL) and large (> 25 SVL) were tested. Growth rates of small individuals showed a high variability around Von Bertalanffy's curve and were affected by year of capture and site. Large animals exhibited a more definite pattern of linear decrease in growth rates and were less affected by environmental factors.
A Population Model for The Nile Crocodile with an Analysis of Sustainable Harvesting Strategies

G.C. Craig
P. Bag BR165 Gaborone
Botswana

INTRODUCTION

In the late 1980's a model was required by CITES to help make more wide ranging recommendations for conservation and management of the Nile crocodile. The same need had been identified by Zimbabwe's Department of National Parks and Wildlife Management where an initial study (Craig et al., 1989), grew into a report to CITES (Craig et al., 1992). This paper is a repetition of the most important conclusions reached as a result of that work.

The main need was for predictions about likely levels of sustained yields of various harvesting strategies and their impacts on crocodile populations. It was recognised that existing information might be inadequate to give accurate predictions, but these were nevertheless urgently required, based on such information as was available, with some statement of the reliability of the original information and about the effect of that on the confidence in the predictions. This approach, it was hoped, would provide provisional options for crocodile management and at the same time highlight those aspects where additional information was urgently needed. In the event, existing information was found to be so inadequate in some respects that novel information was also incorporated.

It was felt that the lack of accurate information did not permit the construction of a model incorporating the degree of complexity of some previous crocodilian models (e.g. Nichols et al. (1976)). This resulted in an approach where, for the most part, calculation replaced computer simulation, and where the results and their underlying causes were intuitively simple to interpret.

METHODS

The model was based on the discrete Lotka-Volterra equation:

$$ \sum l_x m_x e^{-rx} = 1 \quad \text{(1)} $$

No attempt to simulate stochastically determined outcomes was made, as this was considered unimportant under the envisaged circumstances of the population. Density dependent effects were not allowed for because:

a) there is inadequate information to allow these to be simulated realistically and

b) the conclusions can usefully be limited to a stage of population development where density dependent effects are unimportant.
Values of the life table parameters ($l$, and $m_0$ in Equation 1) and the assumed confidence ranges were derived from the literature on the Nile crocodile (Graham, 1968, Hutton, 1988) and other crocodilians (Nichols et al., 1976, Smith and Webb, 1985, Webb et al., 1989). These are summarised in Table 1.

Some improvement to existing information on the growth curve for the Nile crocodile was considered essential and this was derived afresh using previously unpublished data on size-related growth increments from scute sections taken from Cahori Bassa crocodiles. Growth in crocodiles was assumed to take the form:

$$length (\text{metres}) = (3.2 + 0.004t) \times (1 - 0.9e^{-gt}).$$  \hspace{1cm} (2)

This (Craig et al., 1992) is most sensitive to the value of $g$, which was the subject of the renewed estimate.

Table 1. Values used to estimate life-table parameters

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>RANGE</th>
<th>% IMPORTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Growth curve constant $g$</td>
<td>0.093</td>
<td>0.073 - 0.126</td>
<td>33.7</td>
</tr>
<tr>
<td>2 Age at maturity (from 1)</td>
<td>16</td>
<td>12 - 20</td>
<td>(as above)</td>
</tr>
<tr>
<td>3 Age at senescence</td>
<td>55</td>
<td>45 - 65</td>
<td>0.1</td>
</tr>
<tr>
<td>4 Survival age 0 - 1</td>
<td>0.1</td>
<td>0.025 - 0.175</td>
<td>41.5</td>
</tr>
<tr>
<td>5 Survival 1 - maturity</td>
<td>0.9</td>
<td>0.86 - 0.94</td>
<td>22.1</td>
</tr>
<tr>
<td>6 Survival post-maturity</td>
<td>0.99</td>
<td>0.98 - 1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>7 Egg loss</td>
<td>0.17</td>
<td>0.11 - 0.23</td>
<td>0.2</td>
</tr>
<tr>
<td>8 Nesting effort</td>
<td>0.7</td>
<td>0.6 - 0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>9 Sex ratio</td>
<td>0.53</td>
<td>0.5 - 0.56</td>
<td>0.2</td>
</tr>
<tr>
<td>10 Egg inviability</td>
<td>0.11</td>
<td>0.09 - 0.13</td>
<td>0.1</td>
</tr>
<tr>
<td>11 Clutch size intercept</td>
<td>-128</td>
<td>-136 - -120</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Equation 1 was solved for $e^t$ to obtain an estimate of potential rate of increase for the Nile crocodile. This was repeated for upper and lower range values for all parameters in which uncertainty was assumed. Regression coefficients of estimated $e^t$ against the confidence interval of each uncertain parameter were used to give overall approximate confidence limits to this estimate, and to estimate the relative contributions to this uncertainty of the uncertainty of individual parameters (Craig et al., 1992).
Sustainable harvests were calculated by asking what level of change in $l_i$ or $m_i$ would convert an increasing population to a stationary one, i.e. would make $c' = 1$. Equation 1 is then solved for the new parameter value, for example, for egg harvests, where $q$ is the proportion of eggs collected, $m_i$ in equation 1 becomes $(1 - q)m_i$. At equilibrium, rearranging the equation then gives:

$$q = 1 - \frac{1}{\sum l_x m_x}$$  \hspace{1cm} (3)

(Craig et al., 1992).

RESULTS AND DISCUSSION

Given the parameter values of Table 1, the potential rate of increase for Nile crocodiles was estimated to be $c' = 1.08$, i.e. an 8% annual rate of increase. Uncertainty in the parameters used, however, results in approximate confidence limits of $c' = 1.03$ to $c' = 1.13$.

The vast majority of uncertainty (Column 4 of Table 1) in the value of $c'$ appears to derive from poor estimates of three parameters, namely survivorship to age 1, survivorship from 1 to maturity and age at maturity. Clearly, if there is to be an improvement in our ability to make predictions, future research must concentrate on obtaining better estimates of these.

Sustained yields of a variety of harvesting strategies show that egg collection and rearing to a size of 1.2 metres is superior to any other strategy, e.g. Table 2 compares the yield of egg collection with cropping animals from the wild directly for skin.

Table 2. Comparison of egg collection with cropping animals >1.2 metres

<table>
<thead>
<tr>
<th>STRATEGY</th>
<th>SUSTAINABLE % TAKEN</th>
<th>SKIN YIELD (index of area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg collection</td>
<td>92%</td>
<td>4959</td>
</tr>
<tr>
<td>Cropping from wild</td>
<td>8%</td>
<td>218</td>
</tr>
</tbody>
</table>

There may be less differential economically between the strategies of Table 2, because of the cost of hatching and rearing crocodiles, but in conservation terms, it is the absolute comparison which is valid.

The robustness of egg collection as a strategy is also obvious from the percentage of eggs it is permissible to collect. Such a high proportion collected would be unlikely to be achieved even if there were no restrictions on egg collection. This robustness becomes even more apparent when options involving replacement of juveniles are investigated. Here the return of 0.5% (of the number of collected eggs) as crocodiles reared to the length of 1.2m results in restoration of sustainability even when all eggs are collected (Craig et al., 1992).

The simple model of crocodile population dynamics described here enables some useful conclusions to be drawn about safe harvesting strategies. That these also seem intuitively acceptable is additionally encouraging.
REFERENCES


The success of captive breeding and husbandry of crocodilians for conservation and for commercial purposes depends upon successful reproduction. In addition, important parameters of health, growth, and successful adaptation to captive conditions are known to be influenced by conditions during incubation. These effects, which have important consequences for the commercial producer, are the result of interactions between behavior of animals and the hormones they secrete. In recent years significant advances have been made in understanding the complex relationship between the behavior, hormonal activity, and reproduction in reptiles. Many of these results have direct application to crocodile farming and others provide intriguing insights into some unsolved problems of crocodilian husbandry and reproduction. In this paper we report on recent results with reptiles as they might apply to crocodilians and we describe a technique for manipulating the sex of hatchlings independent of incubation temperature that has far reaching potential for conservation and commercial production.

We focus on three factors that influence reproduction. These are:
(i) the importance of behaviors of conspecifics,
(ii) how experience as an embryo can influence the adult phenotype, including reproductive competence, and
(iii) how these and other recent discoveries in reptile reproduction can be used to manipulate sex ratios in captive and perhaps wild populations.

Disregard of these factors may account for the poor success of some captive breeding programs.

Behavior of conspecifics.

An important source of cues regulating reproduction is the animal's social environment. Courtship displays evolved to assist in the identification of individuals of the same species, the appropriate sex, and their competence to reproduce. The complementary interactions among individuals during breeding can, like physical and biotic stimuli, regulate the onset, maintenance, and offset of reproduction (figure 1). They do so by synchronizing and coordinating the intricate physiological processes that underlie both male and female reproduction. Research on species of other vertebrate classes established that social cues include not only visual signals, but signals mediated by every known sensory modality. There have been few such demonstrations in reptiles, three with lizards each representing a distinct clade, and two with a snake. Taken together, this evidence clearly indicates that behavior is a potent regulator of reproductive performance in captive reptiles.
1. The green anole (*Anolis carolinensis*). In these studies, winter dormant female green anoles were exposed to a stimulatory photo-thermal regimen while being housed under different social conditions (Crews, 1974a; Crews et al., 1974). Females housed as isolates or in all-female groups underwent ovarian growth in response to this unseasonal environmental regimen. Although many of these females eventually ovulated and laid eggs, the eggs were always lightly shelled or completely lacking an eggshell. This is an indication of subnormal pituitary gonadotropin secretion. If females were housed with sexually active males, the rate of ovarian growth was significantly increased (Figure 2).
The mere presence of a male is not sufficient. Female green anoles housed with a castrated male, who is not sexually active, show a pattern of ovarian growth that is not different from that of females that are housed in all-female groups or as isolates (Crews, 1974b). On the other hand, if females are exposed to castrated males that have received androgen replacement therapy (which reinstates sexual activity), the pattern of ovarian response is similar to that of females housed with intact, sexually active males.

This behavioral facilitation of reproduction is due specifically to the courtship display of the male (Crews et al., 1974). Indeed, the more frequently the male displays, which in this species consists of bobbing movements associated with extensions of the dewlap, the more rapid the rate of ovarian growth (Crews, 1974a). Taken together, these studies suggest that failure in a captive breeding program requires assessment of the behavior and level of activity of males in the breeding population.

It is important to keep in mind that specific behaviors can also inhibit reproduction. Female green anoles exposed to male-male aggression, rather than to male courtship, never initiate ovarian growth, even if they are exposed to a stimulatory environmental regimen (Crews, 1974a)(Figure 2). Indeed, this aggressive behavior, which is not directed towards the female but rather to other males, is so potent a stimulus that reproductive females will cease all further reproductive activity and any yolking follicle(s) that are present will undergo atresia. Obviously, a captive breeding program should be designed to minimize agonistic interactions among males.

It also is important to understand that this behavioral modulation of reproduction operates in a reciprocal manner. That is, not only does male behavior influence female ovarian growth, but so does female behavior influence male reproductive activity. This can be seen in male green anoles (Crews and Garrick, 1980). Using the same conditions as in the above experiments, males housed in all-male groups or in isolation show a diminished pattern of testicular activity compared to males housed with intact females.

![Figure 3. Behavioral facilitation of reproduction in gonochoicic and parthenogenic species of whiptail (Cnemidophorus) lizards. Shown is the percentage of individuals ovulating when housed under different social conditions. ISOL = isolation; FEMALE = female cage mates; CAST = castrated male cage mates; CAST + A = androgen-treated castrated male cage mates; OVEX + BLANK = sham-treated ovariectomized cage mates; INTACT = intact cage mates; OVEX + PROG = progesterone-treated ovariectomized cage mates (from Crews, 1980).](image-url)
2. Behavioral facilitation of reproduction has been documented also in teiid lizards such as the whiptails (Cnemidophorus spp.). As in the green anole, in the little striped whiptail (C. inornatus), the presence, and more specifically, the reproductive status, of the male is an important feature of the female's housing environment. Females housed as isolates or housed with castrated, sexually inactive males, fail to ovulate (Crews et al., 1986)(Figure 3). Only those females exposed to intact sexually active males undergo complete ovarian growth and lay eggs. It is not known what aspect of the male is important for facilitating the stimulatory effects of the environment, although the behavior of the animals suggest that chemical signals are likely to be important.

3. The fundamental importance of complementary behavioral interactions (e.g., mounting and receptive behaviors) is seen particularly clearly in studies with the parthenogenetic whiptail, Cnemidophorus uniparent. In this species there are no male individuals and reproduction is via obligate parthenogenesis. Rather, the species consists entirely of females and sperm are not required for ovarian development. Interestingly, these parthenogens exhibit both male-like and female-like behaviors during specific stages of the reproductive cycle (Crews, 1989; Crews and Fitzgerald, 1980). These behaviors are seen both in the laboratory as well as in nature (Crews and Young, 1991). Experiments indicate that although male individuals are not essential for ovarian growth in the parthenogen, participation in pseudosexual interactions greatly facilitates the rate of ovarian growth (Crews et al., 1986) (Figure 3) as well as the total number of eggs produced during a breeding season (Crews and Moore, 1991; Crews et al., 1983). The specific stimuli responsible for this facilitation is not known, but the question is amenable to experimentation.

4. In the gekkonid lizard, the leopard gecko (Eublepharis macularius), females will only lay eggs if sexually active males are present (Figure 4). Further, the fertility of the male is important. That is, females housed with sexually active but vasectomized males will lay eggs, but the eggs often lack a shell coating (J. J. Bull, unpublished data). This suggests that not only is the behavior of the male important, but that at least in some species there must exist sensory receptors within the female's reproductive tract that are activated by sperm deposition. Specialized sperm storage ducts occur in many reptiles. This may be why in many reptiles the female can continue to lay fertile eggs for years in captivity in the absence of males. These data also suggest that while it is advisable in a captive breeding program to establish that each male is depositing sperm during mating, a fertile male is not an absolute requirement so long as the females mate successfully at least occasionally.
Embryonic Determinants of Adult Phenotype

The importance of understanding early development in relation to captive breeding and conservation management programs cannot be understated. The embryo experiences a host of physical and biological stimuli independent of maternal control which can affect their development. For example, yolk is a significant repository of circulating hormones and as such reflects the hormonal profile of the mother at the time of yolk deposition (Bern, 1990). This means that the hormone levels in the laying female will be imposed on their offspring. Steroid hormones have traditionally been thought to have organizational effects during embryonic development, but they can affect the animal after birth and even into adulthood. Thus, it is important to keep in mind for captive breeding programs that factors which can adversely affect a females' hormonal profile could also have long-term consequences on the resulting young.

It is becoming evident that careful regulation and manipulation of the embryonic environment will aid in our efforts to maintain present species diversity and conservation efforts. In this section we consider how events and factors experienced by the embryo influence the growth, physiology, and behavior of the adult.

In oviparous reptiles, embryonic development is exquisitely sensitive to the temperature(s) experienced during incubation of the egg. Studies have revealed ranges of temperatures which determine sex in a number of reptilian species (see reviews by Bull, 1980, 1983; Raynaud and Picau, 1985; Deeming and Ferguson, 1988; Ewert and Nelson, 1991).

There are three general patterns of Temperature dependent Sex Determination (TSD) in oviparous reptiles (Figure 5). In some species, a range of higher temperatures produce males whereas a lower range of temperatures produce females. Other species show an opposite pattern in which higher temperatures produce females and lower temperatures produce males. Still others show a pattern in which intermediate temperatures produce males and higher and lower temperatures produce females. It is important to note that in every instance:

(i) the effect of temperature is all-or-none,
(ii) the transition from male-determining to female-determining temperatures narrow, and
(iii) morphological intersexes rare, even at intermediate temperatures.

Figure 5. Response of sex ratio to incubation temperature in oviparous reptiles. In temperature-dependent sex determination, temperatures that vary by a few degrees can result in either all male or all female hatchlings being produced. Three patterns are recognized at present. (A) Females develop at low temperatures, males at high temperatures, as in some lizards and in alligators. (B) The reverse of A, males develop at low temperatures, females at high temperatures, as in most turtles. (C) Females develop at low and high temperatures, males at intermediate temperatures; this pattern may be widespread, as it occurs in the leopard gecko (Eublepharis macularius), the snapping turtle (Chelona serpentina), and some crocodilians (adopted from Bull, 1980).
Temperature, hydric conditions, and hormones during incubation can influence embryonic growth, hatching success, neonatal viability and morphology, sex determination, and even adult physiology and behavior. In the American alligator (*Alligator mississippiensis*), relatively low incubation temperatures result in the production of females, intermediate incubation temperatures result in both males and females, and high incubation temperatures produce males. Joanes et al. (1987) examined the effect of incubation temperature on the post-hatching growth rate. Comparing individuals from intermediate male-biased incubation temperatures, males grow significantly faster than females in both total length and body weight; at the intermediate female-biased incubation temperature the females are heavier. This relationship between incubation temperature and growth is seen also within a sex, with females from 30.6 °C incubation conditions growing faster than females from 31.7 °C. Overall, the effect of temperature on growth was such that, within a limited range, individuals from higher incubation temperatures grow faster than do individuals from cooler incubation temperatures. However, this interpretation is complicated by a differential "run" effect between temperatures; that is, the temperature that resulted in the largest animals also had the lowest percentage of runts (delineated as the bottom 10% of the best growing group), while the two extreme temperatures (29.4° and 32.8° C) had the highest incidence of runts.

Incubation temperature can also affect thermoregulatory behaviors that have consequences for growth. Lang (1987) studied the effect of incubation temperature on body temperature (Tb) selection in the Siamese crocodile (*Crocodylus siamensis*). Eggs were incubated at 28° C, a temperature producing all females, or at 32.5° - 35.0° C, which produces all males. Individuals from the higher incubation temperature not only grow faster but select a higher Tb.

In all of these studies, animals were housed in social groups and hence social interactions, such as dominance and subordination, may translate into access to food, thereby influencing the results. Similarly, the temperature at which animals are raised (versus the temperature at which they were incubated as eggs) or possible sex differences in thermoregulatory behavior could have an effect. To avoid these problems, reasonable controls would be to raise subjects at a constant temperature prior to tests for thermoregulation and to rear each individual in isolation.

It is common knowledge among breeders of captive reptiles that incubation temperature can influence adult behavior. Recent studies with the leopard gecko (*Eublepharis macularius*) provides an excellent example of how temperature during embryogenesis affects subsequent development. In this species, mostly males are produced at intermediate temperatures (30.5 - 32.5° C), whereas only females are produced relatively low (26 - 28° C) and at near lethal incubation temperatures (34-35° C). In our studies we have raised leopard geckos in isolation at a temperature intermediate to the incubation temperatures.

As adults, leopard geckos have marked sexual dimorphisms in morphology. For example, a secondary sex character is the specialized secretory pores located anterior to the cloaca. In males, as well as females from high incubation temperatures, these pores are open, while in females from low incubation temperatures, they are closed. Head size also is sexually dimorphic, with males having wider heads than females. However, within each sex, the higher the incubation temperature, the wider the head of the adult (Crews, 1988).

It must be appreciated that in species with TSD, incubation temperature and sex co-vary. That is, in TSD differences between individuals could be due to the incubation temperature of the egg, the gonadal sex of the individuals, or both factors combined. If the contribution of each is to be assessed, they must be dissociated. Our studies with the leopard gecko have entailed removing the gonads of individuals on hatching (to determine the role of gonadal hormones in postnatal development), administering hormone to incubating eggs (to override the normal effects of temperature), and comparing the growth and behavior of individuals of the same sex but produced at different temperatures. Figure 6 indicates that in the leopard gecko, both incubation temperature and the sex of the animal have significant effects on body growth. Further, the presence of the ovaries, but not the testes, attenuates body growth. It should be noted that the opposite pattern is found in the red-sided garter snake; in this species males are smaller than females and the presence of the testes attenuates growth.
The endocrine physiology of the adult also appears to be influenced by the temperature experienced during incubation (Gutzke and Crews, 1988). Overall, circulating concentrations of androgens are significantly higher in adult males compared to adult females. Within females, however, androgen levels are significantly higher, and estrogen levels significantly lower, in females from high temperatures compared to females from low incubation temperatures. Indeed, most females from high temperatures appear to be functionally sterile, suggesting that the primary alteration is at the neuroendocrine level as it is in androgenized female rodents.

![Figure 6](image)

Figure 6. The relative influence of incubation temperature and gonadal sex on body growth in the leopard gecko, a species with temperature-dependent sex determination. Illustrated is the average body weight (± standard error) from different incubation temperatures or hormonal manipulations; 30.0°C produces a female-biased sex ratio whereas 32.5°C produces a male-biased sex ratio. Each individual was measured every five weeks from hatching until adulthood. All animals are raised in isolation at an intermediate (25°C) temperature and fed a standard diet. Top: Males and females incubated at either 30.0°C or 32.5°C. Bottom: Animals incubated at either 26°C or 32.5°C and then receiving a sham operation or surgical castration on the day of hatching. Each individual was weighed weekly from hatching until adulthood. All animals were raised in isolation while exposed to a 14:10 hr / 30°C:18°C daily photothermal regimen and fed a standard diet. This sample size initially was believed to be nine castrated males, but laparoscopy and RIA for androgens in the circulation revealed the majority to be incomplete castrations. Interestingly, only two female individuals were found to have a partial ovariectomy as adults. In one of these females, the records indicate that one gonad was lost in the body cavity after detachment. This ovary has attached to the liver and yolks follicles, but does not ovulate them. This is consistent with the literature indicating that an intact neural connection to the gonad is necessary for ovulation.
The sexual behaviors of individual leopard geckos from different incubation temperatures vary in a systematic manner, with the responses of females to male courtship showing the greatest difference (Gutzke and Crews, 1988). Females from low incubation temperatures readily exhibit receptivity when courted by a male. On the other hand, females from high incubation temperatures respond more like males than like females from low temperatures. They often will aggressively reject the male or attack him as would occur in a male-male encounter. This effect of a male-producing temperature on the female phenotype is reminiscent of the well-known masculinizing effects of androgen treatment in neonatal female mammals. In other words, high incubation temperature may be acting in a fashion analogous to androgen during development in mammals.

Captive Management of Reptiles with TSD

The occurrence of TSD in many reptiles affords the unique opportunity to artificially control sex determination within a captive population. However, several basic questions must be addressed to optimize the captive management of reptiles with TSD. These questions include: (i) Which temperatures produce a particular sex? (ii) Do all temperatures producing a particular sex result in individuals of equal sexual competence? (iii) Which sex ratios are best for a captive population?

The first question is beginning to be answered in a number of species. It is becoming clear that species which show similar patterns of TSD can have different pivotal temperatures (= incubation temperature producing a 1:1 sex ratio) (Bull et al., 1982; Mrosovsky et al., 1984a; Wibbels et al., 1991). Because of this variability in the patterns and pivotal temperatures of TSD, manipulating the sex ratio of a given species would require that a variety of incubation temperatures be studied simultaneously to determine which specific temperature ranges produce a given sex ratio.

Are there certain optimal temperatures for producing sexually competent individuals? In the leopard gecko, the occasional females resulting from relatively high male-producing incubation temperatures are not reproductively competent (see above). Further, the "sexual potency" of an incubation temperature can vary (Bull et al., 1990; Wibbels et al., 1991). For example, in the red-eared slider turtle (Trachemys scripta), shifting eggs to a higher (female-producing) or a lower (male-producing) temperature will result in more skewed sex ratios. Such studies could prove difficult using turtles because of the length of time separating incubation and adult reproductive success. However, a lizard such as the leopard gecko, which matures rapidly and adapts well to captivity, could prove to be a model species for such studies.

The ability to manipulate sex determination by temperature necessitates the choosing of an appropriate sex ratio for a given captive rearing program. This issue can be approached using two distinctly different strategies. In the first approach, one could attempt to duplicate the sex ratio of naturally occurring populations. The sex ratios in natural populations of reptiles with TSD do not always conform to the 1:1 ratio suggested by sex allocation theory (reviewed by Bull and Charnov, 1988; see also Limpus, 1985; Mrosovsky and Provancha, 1989; Wibbels et al., 1991). In fact, many female-biased sex ratios have been detected as well as at least one male-biased sex ratio (Limpus, 1985). The evolutionary basis of skewed sex ratios is unknown, although Bull and Charnov (1989) have proposed that factors such as thermal environment preferences and/or posthatchling growth rates could affect the fitness of a particular sex and thus select for biased sex ratios. Regardless, our present knowledge of TSD and the resulting sex ratios prevent us from assigning an evolutionarily stable sex ratio to a given population of reptiles with TSD.

While the effects of sex ratio on the reproductive output of a population of reptiles with TSD has not been empirically addressed, it seems that in situations in which reproduction is female-limited, an increased production of female offspring could significantly increase the reproductive output of a captive population. Thus, an alternative strategy would simply be to disregard sex ratios that occur in the wild and manipulate the sex ratio of the captive population in order to maximize reproductive success.

If one decides to generate a biased sex ratio, what incubation temperatures should be used? That is, should an incubation temperature that produces the desired sex ratio be utilized or should a proportion of the eggs be incubated at a male-producing temperature and the remainder incubated at a female-producing temperature? These questions can be addressed by studies investigating the effects of incubation temperature on sexual competence (as discussed above for the leopard gecko).
If a female-based sex ratio is desired, an alternative method would be the treatment of eggs with estrogen. A variety of past studies have shown that injecting estrogen into developing eggs results in ovarian differentiation regardless of incubation temperature (reviewed by Raynaud and Pieno, 1985; see also Gutzke and Bull, 1986; Crews et al., 1989). However, this method suffers from a low survivorship. A recent study has shown that topical application of estrogen to the egg shell acts in similar fashion (Figure 7) and has negligible mortality (Crews et al., 1991). Studies with the leopard gecko indicate that such estrogen-induced females lay fertile eggs and exhibit normal nest-building behavior.

We presently are investigating the mechanism by which estrogen induces ovarian differentiation. Experiments indicate that estrogen and temperature act synergistically on sex determination, suggesting that they may act in a common pathway (Wibbens et al., 1991).

![Figure 7. Effect of exogenous estrogen (100g of estradiol-17β dissolved in 5ul of 95% ethanol) spotted on the shell of red-eared slider (Trachemys scripta) eggs during the temperature-sensitive window. Histological sections of the gonads at hatching are depicted. Note the clearly delineated cortical and medullary region (from Crews, 1991).](image-url)
In our most recent work (Wibbels, Bull & Crews 1992) we have demonstrated that a similar technique can be used to at least partially override the female producing influence of temperature. Topical application of androgens did not override the feminizing influence of temperatures that produce only female offspring. However, in a series of experiments with red eared slider turtles (*Trachemys scripta*) we show that in eggs treated topically with androgens and incubated at temperatures that normally produce males and females in equal proportion, all the offspring hatch as males (Figure 9). The gonads of males produced by topical androgen were indistinguishable from gonads of males produced by temperature manipulation and no hermaphroditic gonads were observed. The results indicate that sex determination in these embryos was bipotentially sensitive to sex steroids.
Discussion.

The conservation of endangered or threatened species of reptiles is a pressing problem. One important factor is the sex ratio of the breeding population (the secondary sex ratio) which is strongly influenced by the sex ratio at birth (the primary sex ratio). TSD thus has profound consequences for conservation programs. This has been most clearly demonstrated in sea turtle hatchery programs that are feared to have produced mostly male turtles, reducing the conservation benefits of these programs.

Many crocodilian programs involve manipulation of eggs, either from captive breeding or from ranching operations, the offspring from which are released back to the wild. Control of the sex ratio of these offspring is necessary. Captive breeding programs for severely endangered species can also benefit from the careful regulation of sex ratios in breeding stock to optimise both production and genetic diversity of captive populations for future restocking in the wild. There are also practical benefits to manipulating sex ratios. One sex or the other may grow faster or be more amenable to captive conditions. Where sustainable use programs are being used as an incentive for the conservation of wild populations the efficiency of production for commercial use is an important component of economic viability and success.

The only available method until now for manipulating sex ratios in captive breeding groups has been to control the temperature of incubation. While this is a proven effective method, practical constraints limit its applicability. In remote areas technical support, equipment and reliable power supplies are scarce and temperature manipulation facilities may fail with disastrous consequences for conservation programs. The technique of spotting eggs with hormones to induce the desired sex of offspring provides an easy and inexpensive method. The procedure has no mortality associated with its application and has been demonstrated on a wide variety of reptilian species. The reproductive capacity of hormone induced offspring appears to be normal in the several species tested and the growth rate of these offspring is often enhanced. The procedure for conducting this process has a patent pending with the right assigned to a non-profit organization (Reptile Conservation International Inc.) devoted to the conservation of reptiles and any income derived from the procedure will be used to support further research and development.

We have described how the social environment can determine the level of reproduction in captive populations. It is also clear that environmental variables have effects on the development of embryos which can last into adulthood. Thus, maintenance of captive populations of endangered (or even extinct in the wild) reptiles should be mindful of these factors.

The development of an effective method to treat developing eggs topically with hormones allows sex determination to be manipulated independently of temperature. This opens the possibility of manipulating the other consequences of embryonic conditions, such as growth rate, without restricting the sex of the offspring. This technique has clear potential for both conservation and commercial applications.

The information presented here only scratches the surface of the problem. More studies are needed on the physiology of TSD and the physiological basis by which embryonic temperatures affect adult reproductive competence. Also needed are more studies of (i) the effects of sex ratio on the reproductive potential of captive as well as naturally occurring populations of reptiles and (ii) manipulation of sex ratio in the field by either physical manipulation (e.g., erecting or removing shade) or hormonal manipulation (e.g., hormone treatment of eggs in the nest).

Acknowledgements

Paper presented by J.P.R. supported by Crocodile Specialist Group, IUCN/SSC and Florida Museum of Natural History. Research supported by HD 24976 and NIMH Research Scientist Award 00135 to DC, NIMH NRSA MH 0991 to AT, and NIH NRSA HD 07319 to TW.
References


Crews, D., J. S. Rosenblatt, and D. S. Lehrman (1974). Effects of unseasonal environmental regimen, group presence, group composition and male's physiological state on ovarian recrudescence in
the lizard, *Anolis carolinensis*. Endocr. 94: 541-547.


GROWTH RATES AND BODY CONDITION FACTORS FOR ALLIGATORS IN COASTAL LOUISIANA WETLANDS: A COMPARISON OF WILD AND FARM-RELEASED JUVENILES

Ruth M. Elsey, Ted Joanen and Larry McNease

Louisiana Department of Wildlife and Fisheries,
Route 1, Box 20-B
Grand Chenier, Louisiana 70643

and

Noel Kinler

Louisiana Department of Wildlife and Fisheries
Route 4, Box 78
New Iberia, Louisiana 70560

Growth rates and body condition factors for native wild and captive-raised juvenile alligators (*Alligator mississippiensis*) that had been released to the wild were studied using tag-recapture methods for 274 alligators over a four-year period. Alligators were grouped by sex, size class, source (farm-released vs. native wild), and as to whether they had overwintered or not. In most groups, the farm-released alligators grew significantly better than wild alligators matched for sex and size; in the remaining groups the post-release alligators grew as well as their counterparts, though not better. Overwintering tended to slow growth rates in both groups, but farm-released alligators still demonstrated superior growth over native wild alligators even after overwintering. Males tended to grow faster than females, though this trend was not always significantly greater. In no matched group did females grow faster than males. Growth rates diminished with increasing size class in native wild alligators (smaller alligators grew faster), but in farm-released alligators growth rates remained accelerated even at the larger size classes. Growth curves were constructed using known recapture data with three growth models (von Bertalanffy, Gompertz, and logistic); the calculated maximum attainable length and growth parameters were significantly larger ($p<0.01$) for farm-released alligators than wild using all three models. Body condition factors were not different in captive-raised post-released alligators than native wild alligators. Management implications for crocodilian restocking and utilization programs are discussed.
FEEDING HABITS OF JUVENILE ALLIGATORS ON MARSH ISLAND WILDLIFE REFUGE: A COMPARISON OF WILD AND FARM-RELEASED ALLIGATORS

Ruth M. Elsey, Larry McNease and Ted Joanen
Louisiana Department of Wildlife and Fisheries,
Route 1, Box 20-B
Grand Chenier, Louisiana 70643

and

Noel Kinler
Louisiana Department of Wildlife and Fisheries
Route 4, Box 78
New Iberia, Louisiana 70560

Stomach contents were analyzed from one hundred eleven juvenile alligators (Alligator mississippiensis, approximately 135-170 cm total length) to determine if alligators hatched and raised in captivity (until 120 cm size) then released to the wild would be capable of foraging successfully for food. Eighty farm raised alligators were released in April 1991 and captured during an experimental wild alligator harvest in July 1991 on March Island Wildlife Refuge and viscera removed. Stomach contents from thirty-one native wild alligators of similar size were also collected for comparison. Crustaceans were the most important prey item, with blue crabs (Callinectes) being the most frequently (70-80%) occurring item in both groups. Crawfish (Procambarus), grass shrimp (Palaemonetes), and mud crabs (Sesarma) occurred in 20-35% of stomachs in both groups. Fish and molluscs occurred more frequently in native wild alligators, whereas farm-released alligators consumed more birds and mammals, including nutria (Myocastor), muskrat (Ondatra), mink (Mustela), and rabbit (Sylvilagus). Insects were seen in approximately 15% of each group. Total prey weight and total weight of stomach contents were not significantly different between groups. Vegetation/plant material was seen in 95% of stomachs from each group, and probably ingested incidentally. 5% of native wild alligators and 7% of farm-released alligators had no prey items in the stomach. 86% of wild alligator stomachs contained endohelminths (averaging 14 worms each) whereas farm-released alligators only had worms in 47% of the stomachs examined, with 4 worms/stomach containing worms. Lateral fat bodies were twice as heavy in the farm-released alligators than the native wild alligators. These data suggest that alligators raised entirely in captivity (and provided food ad libitum), then released into the wild, are able to forage for food and hunt successfully as well as native wild alligators. Farm-released juvenile alligators may be more "advanced" in their feeding habits than wild juvenile alligators, as they were more likely to consume large prey items (nutria, muskrat, birds) normally not taken by alligators until the adult size class is reached.
LIPID AND FATTY ACID COMPOSITIONAL DIFFERENCES BETWEEN EGGS OF WILD AND CAPTIVE BREEDING ALLIGATORS (Alligator mississippiensis): AN ASSOCIATION WITH REDUCED HATCHABILITY

Mark W.J. Ferguson¹, R.C. Noble² and R. McCartney²

¹Department of Cell and Structural Biology, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, England
²Department of Biochemical Sciences, The Scottish Agricultural College, Auchincruive, Ayr, KA6 5HW, Scotland

A common problem in crocodilian farming is the reduced hatchability of eggs from captive breeding programmes. In the American alligator, the typical hatchability of eggs from captive breeding females is 50%, compared with 94% amongst wild eggs. The major problem is early embryonic death. We performed detailed analysis of the lipid and fatty acid compositions of the yolks of eggs from wild and captive breeding alligators from the Rockefeller Wildlife Refuge, Louisiana. There were extensive differences between the wild and captive bred egg yolks. The lipid of the yolks from the captive bred eggs displayed considerably lower levels of C20 and C22 polyunsaturated fatty acids and higher levels of C18 polyunsaturates, compared to the wild eggs. More specifically, overall levels of N6 polyunsaturates were increased at the expense of N3 acids in the captive eggs. C20 and C22 polyunsaturated fatty acids play a key role in embryonic development, e.g. of the nervous system. It is therefore likely that the yolk fatty acid compositional differences and the differences in hatchability between captive bred and wild eggs are associated. We therefore analysed the lipid and fatty acid compositions of typical alligator diets; including nutria, crocker fish and 3 commercial rations. The nutria and all 3 commercial rations were deficient in C20 and C22 polyunsaturated fatty acids and had high levels of C18 polyunsaturates: the levels bearing an uncanny resemblance to those found in the captive bred eggs! Fish on the other hand, had higher levels of C20 and C22 polyunsaturates. It is therefore proposed that the diets of breeding alligators need to be supplemented (or the commercial composition of the rations altered) to include specific species from the C20 and C22 polyunsaturated fatty acids. However, these fatty acids will need to be adequately protected with selenium and vitamin E, as occurs in natural fresh fish. Preliminary analysis of the captive eggs for selenium and vitamin E shows that they are also deficient in these compounds which may further potentiate the problem. Subtle dietary differences may be the cause of reduced hatchability in eggs from captive breeding programmes.
A RADIOTELEMETRY AND MARK-RECAPTURE EXPERIMENT TO ASSESS THE SURVIVAL OF JUVENILE CROCODILES RELEASED FROM FARMS INTO THE WILD IN ZIMBABWE

R. A. FERGUSSON

P.O. Box HG 11
Highlands, Harare
Zimbabwe

ABSTRACT
Large numbers of Nile crocodile eggs are collected by crocodile ranchers from Lake Kariba, Zimbabwe. A small percentage of this harvest is returned to the wild at 1 to 1.5 m TL. This paper describes the initial stages of a survey to monitor the success of this process. Radiotelemetry and mark-recapture techniques are being used to estimate survival, growth and dispersal of the captive raised animals comparative to that of the wild population. There are indications of considerable mortality caused by cannibalism and human interference. Patterns of growth and dispersal after release are apparent. The results of this investigation have implications for sustainable harvesting programs for crocodiles throughout Africa and also for conservation programs in which restocking of depleted habitats is concerned.

INTRODUCTION
This project originates from CSG research objectives. The objective is to evaluate the success of the crocodile release program that is the current policy of the Crocodile Farmers Association of Zimbabwe (CFAZ) and the Department of National Parks and Wildlife Management (DNPWLM). The background and relevance of this project are outlined briefly;

- Commercial crocodile ranches collect eggs from the wild and rear these animals in captivity. Lake Kariba is the focus of these activities in Zimbabwe.

- Prior to 1987 each of the 5 crocodile ranches collected less than 3000 eggs each year - the quota being set by DNPWLM.

- Since 1987 unlimited egg collection has been encouraged, partly to estimate the size of the adult population and up to 40 000 eggs are collected each year.

- Empirical evidence and modelling indicate that a very large proportion of eggs can
be removed sustainably, provided a number of juvenile animals are released each year. Survival values of wild and released crocodiles have been assumed for modelling and require field evidence.

- There has always been a provision for the subsequent release of juveniles as a condition of the permit for egg collection. Prior to 1990 this was not invoked, apart from small scale releases above Victoria Falls in the 1960s and at Sinamwenda in Lake Kariba in the early 1970s.

- Releases started in 1990 and a number of animals equivalent to 2% of the number of eggs found 2 years previously are being released annually at a size which it was anticipated have a low level of mortality.

- The Zimbabwean policy of crocodile management has been emulated by several other African countries although none of these have yet reached the stage of releasing animals. Validation of the successful integration of released animals is thus essential for successful crocodile management in Africa as a whole.

This paper constitutes a progress report covering nearly six months of operation. As such it is descriptive and does not attempt to provide calculated estimates for the parameters studied. Insufficient data have been collected to provide more than indications of the pattern that may finally be expected.

**KEY QUESTIONS AND METHODS**

The key questions to be answered are;

1) What is the survival rate of captive raised animals released to the wild?
2) How does acclimatisation to the wild habitat progress?
3) What behavioural changes occur among released animals?

These questions are also addressed to the wild population to provide a basis for comparison.

The Gachegache estuary, Lake Kariba, was chosen as the initial study area as access is relatively easy and the area is representative of much of the Kariba environment, with recreational boating, line fishing, illegal gill netting and a resident human presence. Mapping of the estuary at the present low water level and placement of position markers at 250 m intervals along the shoreline was carried out before the release began (See Figure 1).

The captive raised animals released in this project were supplied by Lake Crocodile Park, Kariba (82 animals) and Rokari Crocodile Farm, Bumi (67 animals). A pool of animals for release had already been made by management at both farms. Selection for release was effectively random as none of the animals were identified and no previous history was known. Only competent animals without injury or deformities were selected for release.

Processing included basic data collection on each animal. Mass, seven measurements of body size and sex were recorded for each animal. These parameters were selected to investigate possible morphological co-variates of survival and to investigate possible differences between farm and wild raised animals.

Individual identification was made by attaching a numbered tag to the web of the left rear foot and by partial mutilation of a coded sequence of paired tail scutes. This duplication was
Figure 1. Location of the study area within Lake Kariba and detail of the estuary.
necessary as the endurance of the foot tags was unknown. An aluminium tag which carries an unique combination of reflective colours was also applied to both sides of the head of each animal by suture with surgical wire. This technique is essential in mark-relocation procedure as the head is the only part of the body that is consistently visible. Tagging had no apparent effect on the performance or survival of the animal. Head tags can be applied without causing trauma or bleeding. No mortality occurred as a direct result of tagging.

Animals were then held in damp jute sacks, transported by boat and released in batches at previously selected sites throughout the estuary. The releases were made in mid-February and early April 1992. The second batch was delayed for the arrival of the radios, transport across 70 km of lake and to allow initial monitoring of the first batch to proceed.

"Recapture" is in the form of resighting. The sampling procedure involves searching sections of the shoreline of the estuary at night with a spotlight and all crocodiles seen are classified by size. Tags become identifiable at approximately 10 m and the identity and location of tagged individuals is specifically recorded.

Physical recapture of tagged animals is attempted at intervals of > 60 days to reweigh and remeasure individuals for growth increments and to repair damaged or lost tags. Capture of wild crocodiles of similar size is attempted whenever possible during night sampling. Such animals are processed, tagged and released at the site of capture.

The data takes the form of a series of "capture" histories which are used to calculate survival estimates based on Jolly's closed model (Arnason and Baniuk 1978).

Radio transmitters were attached to 25 selected individuals before release. The transmitters (Model FRT-8; Lotek Engineering, Aurora, Canada) are small (160 g), sealed units designed for aquatic species. They are mounted dorsally on a neck collar with a 15 cm whip antenna directed backwards. Problems have been encountered with rotation of the collars although acceptable range is obtained even when this has occurred and with premature rotting of a degradable insert.

Each transmitter is located at approximately 3 day intervals. The date, location and activity of each fix is recorded, providing a similar series of capture histories. The data are often retrospective as animals are seldom seen and are inferred to be alive when subsequently found at another location. The data are analysed following a restricted version of the Kaplan-Meier procedure described by Pollock, Winterstein, Bunck & Curtis (1989) and Pollock, Nichols, Brownie & Hines (1990).

CURRENT STATUS AND PRELIMINARY RESULTS
149 tagged animals were released in two batches - 82 in Feb '92 and 67 in April. 124 animals were tagged only with visible head-tags and the rest (25), all had radio transmitters attached (/ 15 with h/tags and 10 without). Monitoring started in late March and has continued more or less continually ever since.

1) Survival
A total of 374 locations have since been made on 89 individuals. The difference in technique is immediately apparent, for example only 2 animals have been located on 5 or more occasions while 17 radio-tagged animals have been located on more than 5 occasions, up to
a maximum of 12 locations for an individual.

1.1) Mark-resight results
The resighting rate (Table 1), an index which reflects the proportion of tagged animals in the population, has been calculated. This is broken down by time in months after release and corrected for sampling effort.

Table 1. Resighting rate each month since release, calculated from the number of tagged animals seen, corrected for sampling effort.

<table>
<thead>
<tr>
<th>Month</th>
<th>Km Sampled</th>
<th>Number Seen</th>
<th>Correction Factor</th>
<th>Resighting Rate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCH</td>
<td>29.75</td>
<td>15</td>
<td>1.43</td>
<td>21.48</td>
<td>1st batch</td>
</tr>
<tr>
<td>APRIL</td>
<td>26.50</td>
<td>49</td>
<td>1.60</td>
<td>78.40</td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>40.25</td>
<td>60</td>
<td>1.06</td>
<td>63.60</td>
<td></td>
</tr>
<tr>
<td>JUNE</td>
<td>42.50</td>
<td>53</td>
<td>1.00</td>
<td>53.00</td>
<td></td>
</tr>
<tr>
<td>JULY</td>
<td>18.75</td>
<td>19</td>
<td>2.27</td>
<td>43.13</td>
<td></td>
</tr>
</tbody>
</table>

The decline in the resighting rate seen in Table 1 reflects the combined loss of tagged animals from mortality, emigration and tag loss. Emigration is discounted as considerable efforts have been made to locate tagged animals outside the study area, without success.

Tag loss is the biggest source of bias. Three means of estimating tag loss were built into the design - all animals carry both permanent marks (cut scutes) and temporary marks (head tags); at each sighting the condition and presence/absence of both head tags is specifically noted; and among the radio tagged animals, half have head tags and half have not, allowing for comparison when these animals are recaptured for measurement. Lost tags are replaced whenever an animal is handled and modified tags are now being applied which are less prone to working loose.

It is estimated from sighting that tag loss in the first 3 months after release was around 10%. The cumulative effect of this loss on the pool of tagged animals available for sighting does not alone explain the decline seen in Table 1.

A separate analysis also indicates that the numbers available for resighting are decreasing through time. The ratio of first sightings of a tag to second or repeat sightings has dropped markedly each month since the release (Table 2).
Table 2. The ratio of first sightings of a tag to subsequent sightings of a tag, for one month period since release.

<table>
<thead>
<tr>
<th></th>
<th>1st Month</th>
<th>2nd Month</th>
<th>3rd Month</th>
<th>4th Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Sighting</td>
<td>27</td>
<td>26</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Repeat Sighting</td>
<td>10</td>
<td>17</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

Such a decline through time would be expected as the number of first sightings approaches the total number released. In this case there are still more than 60 tags that have not yet been seen. Tag loss is assumed to affect previously seen and unseen tags equally.

These preliminary results indicate the possibility of considerable mortality - affecting up to half of the animals released. Another factor that suggests that mortality is considerable is that only 3 of the 54 animals released in the study area in January 1991 have been found during this study, and one of those is known to have died since.

1.2) Radio telemetry results
Twenty five animals carrying radio tags were released in April 1992. In the three months since release there has been unexpectedly high mortality (Figure 2).

Five histories of relocation ended with the collar being shed and these are not considered further. Of the 20 remaining, only 8 are currently known to be alive, while 6 are definitely dead and contact has been lost with the remaining 6, in circumstances which suggest they are also dead.

```
8 Alive
25 - 5 = 20
6 Dead
4 CROC
2 HUMAN
6 Suspect dead
```

Figure 2. The present status of released radio tagged juvenile crocodiles in the Gachegache estuary.
The cause of death is interesting; 4 animals have definitely been predated upon by larger crocodiles. In all of these cases the radio signal was either received from a large adult male and moved with this animal, or contact was lost for period of up to 4 weeks after which the collar was relocated after regurgitation. This suggests the original assumption that release at 1.2 m TL would avoid cannibalism was incorrect. A further two animals were beaten to death by fish poachers after becoming trapped in a shallow pool at the top of the estuary as the water receded.

2) Acclimatisation - growth and condition
The sample size for this section of the results is fairly small (n = 30 or 20 % of the animals released). Recapture of specific animals on set dates for remeasurement is seldom successful considering the large area covered and the chance of successful capture. All the animals recaptured so far have been included, irrespective of the capture date (33 to 147 days after release) and all are first recapture.

This spread of capture dates introduces problems with interpretation because it includes growing and non-growing periods. Significant differences in growth rate occur in these periods in Kariba (Games 1990).

The limited data available however indicate considerable changes in linear dimensions and in mass (Table 3). The overall trend is increase in all dimensions except the circumference of the base of the tail. There is wide variation between individuals and an indication that those over 1.2 m TL increase more in linear dimensions than smaller animals. Mean change in TL for animals < 1.2 m TL is negative while animals > 1.2 m TL on average increased by nearly 30 mm. These growth rates are considerably higher than those found previously for released animals (Loveridge pers. comm.) but may relate to previous feeding in captivity and will decline with time.

Table 3. Mean change in body dimensions for recaptured animals over the period 33 to 147 days after release. (n = 30; all measurements in mm, except for mass (g))

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Mean Change</th>
<th>Std Dev.</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS (g)</td>
<td>+ 30</td>
<td>496.4</td>
<td>+1250; -1000</td>
</tr>
<tr>
<td>TOTAL LENGTH</td>
<td>+ 12.3</td>
<td>35.4</td>
<td>+93; -99</td>
</tr>
<tr>
<td>SNOUT-VENT</td>
<td>+ 9.9</td>
<td>18.7</td>
<td>+55; -30</td>
</tr>
<tr>
<td>BASE TAIL</td>
<td>- 4.6</td>
<td>7.7</td>
<td>+13; -20</td>
</tr>
<tr>
<td>HEAD WIDTH</td>
<td>+ 2.1</td>
<td>2.0</td>
<td>+8.9; +0.2</td>
</tr>
<tr>
<td>HEAD LENGTH</td>
<td>+ 4.1</td>
<td>4.8</td>
<td>+18; -3</td>
</tr>
</tbody>
</table>

Condition indices at the time of release are generally higher than when recaptured, only 2 of the 30 animals recaptured had higher condition scores after a period in the wild. This pattern is common to animal larger and smaller than the 1.2 m TL division described above and includes summer and winter data.
3) Movement and dispersal
The release sites were distributed along the length of the estuary, a pattern which is contrary to that found in the wild. In wild populations of *C. niloticus* the juveniles and sub-adults disperse downstream to more open sections of the water body, generally away from adult animals (Hutton 1984). This pattern of release sites was made intentionally in an effort to determine the most successful position as previous releases have been made without prior observation of the distribution of wild inhabitants of the release areas.

Most of the data on movement is from radio tagged animals. The data fits this pattern in that almost all of the radio tagged animals released in the top half of the estuary have subsequently been killed or have dispersed downstream. The displacement of an animal from the release site to the site of first location is very variable in direction and distance (Tables 4a,b).

Table 4a. Statistics of movement from release site to first location. (All distances in m)

<table>
<thead>
<tr>
<th>Maximum distance</th>
<th>Minimum distance</th>
<th>Mean distance</th>
<th>Distance/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>6220</td>
<td>0</td>
<td>953</td>
<td>0 to 2780</td>
</tr>
</tbody>
</table>

Table 4b. Direction of movement from release site to first location (*n* = 89 animals).

<table>
<thead>
<tr>
<th>Upstream</th>
<th>Downstream</th>
<th>No trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>33</td>
<td>28</td>
</tr>
</tbody>
</table>

The direction of first displacement from the release site is apparently random and it is suggested this is to be expected since these are naive animals, a directional trend may appear as they learn the local environment. The majority of long distance (>2000 m) movements before first location are downstream.

The trend in direction of repeated locations for the radio tagged animals and those head tagged individuals that have been located more than 3 times is mostly downstream, i.e 13 made a net displacement upstream, 20 went downstream and 8 moved very little from the release site.

This pattern in which some animals are very sedentary while others are very mobile may have significance as it appears that individuals which regularly move long distances are eventually lost to predation. The pattern certainly introduces a problem for mapping distribution and displacements and in calculating activity ranges - one type can be plotted on a scale of metres but the long distance movers require a scale in kilometres.

**FUTURE DIRECTIONS**
This project will continue at the present site to obtain data for a year after release. Dependant on funding, it is intended that a second field season will follow, using the indications and the lessons learnt so far to develop a "best possible" case. This will probably involve releasing larger animals, earlier in the hot season, at a site(s) previously found to be free of human disturbance and without a large adult crocodile population.
ACKNOWLEDGEMENTS
The Peoples Trust for Endangered Species is acknowledged for funding the entire project so far. Astra Wildlife (Pvt)Ltd has provided telecoms and workshop facilities. Dr J.M. Hutton and the CFAZ have provided local support and encouragement.

REFERENCES


Disease Trends on Crocodile Farms in Zimbabwe

C M Foggin, Veterinary Research Laboratory,
P O Box 8101,
Causeway, Zimbabwe

Introduction

The crocodile farming industry in Zimbabwe, reacting to market forces, showed rapid growth from 1986 to 1990. In the last two years however, this trend has ceased. Most farmers have now had some opportunity to gain experience in the techniques of raising crocodiles and a certain degree of standardization prevails in the industry. For example all farms, including those situated in hot areas, now hold hatchlings in heated ponds, generally at 32°C. These ponds are either indoors, often with little ventilation or natural light, or are covered at night. In addition, almost all farms keep rearing stock in similar heated facilities. Stocking densities are usually from 6 to 12 hatchlings per m² and about one-third of this for rearing stock. There still exists some variation in diet, which can include fresh fish, poultry and red meat from abattoir waste, hunting operations or from natural mortality of livestock. All farmers now realise the importance of hygiene and the effect of stress on the health of crocodiles, though opinions differ on how to control these factors.

With such developments in the industry it would be expected that mortality from disease should decrease, and indeed this has been the case. In the years 1980 to 1983 mean annual, hatching mortality throughout the industry in Zimbabwe was 31.2%. In 1991 it was 11.7%. However, the importance of disease has not disappeared altogether. Previously-known diseases are still present and some have altered in their manifestation on the farm, while new conditions have been recognised and assumed some importance.

Present status of specified diseases and recent findings

Specified diseases include the major, communicable diseases of farmed crocodiles: that is adeno- and pox-virus infection, chlamydiosis, salmonellosis (Salmonella typhimurium infection), and coccidiosis. A list of farms infected with these diseases is maintained and in future, once the epizootiological factors have been further elucidated, it is possible that sales of live hatchlings from these farms may be restricted. Other diseases may have to be controlled by the use of vaccines. Some nutritional and other non-specified infectious diseases are also considered potentially important, because their aetiology is not fully understood; these will be also elaborated below.

Adeno-virus infection - the manifestation of acute adeno-virus hepatitis, enteritis and pancreatitis has been described previously (Foggin, 1987; Foggin, 1991). It has now been recorded on 24 out of 42 farms in production in Zimbabwe (57%). The disease is uncommon in crocodiles over five months of age and usually affects slower-growing individuals. More recently, it became obvious that the virus could cause chronic inflammation of the liver and that this is, in part, responsible for the development of runts. These chronic pathological changes include fibrosis of the portal tracts, bile duct hyperplasia and reduction of parenchyma tissue. Some affected individuals have shown icterus. On some farms a high proportion of runts have been shown to have been afflicted with this condition.
Pox-virus infection - this disease has been recorded in a number of countries (for literature review see Foggin, 1991) and has been adequately described. It was first confirmed in Zimbabwe in 1982 and is now known to be present on 13 farms. However this figure is likely to be erroneously low because, although morbidity is very high, mortality is low and specimens are not submitted as farmers can easily recognise the condition themselves. The significance of the disease now lies in the fact that it predisposes the skin to more serious fungal and bacterial invasion, described below, which may prove fatal. Trials with autogenous vaccine have given variable results. Unvaccinated individuals are likely to develop generalised pox when the live vaccine virus is introduced into the rearing environment.

Chlamydiosis - this is a recently recognised infection of crocodiles in Southern Africa (Huchzermeyer et al., in press), though it has been described in other reptiles (Newcomer et al., 1982). Retrospective examination of histological specimens, demonstrated that the infection has been present in Zimbabwe for some time and it has now been diagnosed on 15 farms. The usual manifestation is acute hepatitis, often associated with adeno-virus infection. Usually, there is gross enlargement of the spleen. The prevalence of asymptomatic carriers is unknown. Chlamydia infection may be a potential zoonosis, but there is no evidence that crocodile farm workers have been affected.

Bacterial disease - this remains the major cause of mortality from infectious disease in Zimbabwe. As previously reported (Foggin, 1987), gram negative enterobacteria are usually involved. Necrotic enteritis, a particularly devastating form of bacterial disease, often follows adeno-virus infection or coccidiosis. Of most concern has been the high proportion of infections with Salmonella spp., a group which has public health significance. Over a four year period, 49.4% of bacterial isolates from crocodiles submitted for post mortem were identified as Salmonella spp. While Salmonella arizonae is often isolated incidentally and may almost be regarded as a normal intestinal bacteria of crocodiles, Group C Salmonella and Salmonella typhimurium appear capable of acting as primary pathogens. The practice of using poultry or livestock carcasses of animals which may have died from infectious disease, as a source of food for crocodiles, is likely to have contributed to the increasing prevalence of infection by these organisms.

Salmonella - contaminated crocodile meat is unacceptable for human consumption, yet close to 100% of normal, farmed crocodiles carry these bacteria (Madsen, pers. comm., 1992) and it could be anticipated that it would be difficult to produce crocodile meat free of these bacteria. Indeed, Madsen and Chambers (1991) found that 16.4% of tail-meat samples were contaminated with Salmonella, a figure that is somewhat lower than the contamination rate for crocodiles in Australia (Manolis et al., 1991).

Coccidiosis - this disease was first diagnosed on crocodile farms in 1978, though it had almost certainly been present before. It has now been confirmed on 28 farms. Mortality from coccidiosis can still be very high, though it responds well to treatment with sulphachloropyrazine. Undersize individuals are most susceptible, and death is often a result of necrotic enteritis. In severe, acute cases, shizions and sporocysts can sometimes be demonstrated in liver, lung and other viscera. Coccidiosis can also be a cause of runting because of the chronic nature of the inflammation that may be produced in the biliary system. Despite the fact that farmers are urged not to purchase hatchlings from infected farms, unless they are removed straight from the incubator, a number of farms are infected every year by this practice.
Fungal and other dermatitis - dermatitis, other than that caused by pox, is a condition that has recently gained importance. It can occur in slaughter stock, as well as other age groups, and therefore hide quality may be affected. Ulcerative or crusting dermatitis, seen as brown lesions between the ventral scales, and excoriation of the epidermis in the intertriga are presenting features. Ophthalmia may also be present. Mortality may occur in severe cases, especially when the nares are blocked by exudate. Dermatophilus-like bacteria are demonstrated histologically in some lesions, while Fusarium spp. and other mycelia-producing fungi have been isolated in culture. A number of factors are believed to be responsible for this syndrome, and they include lapses in the standard of hygiene, the type of housing now used on most farms and nutritional factors. Trauma and pox may also be important.

Nutritional osteomalacia - is still seen on some farms every year, despite adequate inclusion of calcium and vitamin D, in the diet. Osteomalacia of the vertebrae can result in compression of the spinal chord and posterior paresis. Sudden death also occurs in well-grown individuals from low levels of calcium in the blood, and subsequent tetany. Because vitamin analyses cannot be routinely undertaken in Zimbabwe, it has not been possible to confirm if loss of vitamin potency in the premix is responsible for some cases of this syndrome. Certainly, calcium levels in supplements are found, at times, to be considerably lower than the stated analysis. There is some evidence to suggest that crocodiles which are marginally deficient in Vitamin D, do benefit from exposure to sunlight which chemically activates any precursors of Vitamin D which may be present in the diet. The relative role of these factors requires elucidation.

Vitamin E/selenium deficiency - this is a nutritional deficiency which has recently been recognised in Zimbabwe. It has occurred only where a diet of fish is fed and causes typical steatitis (yellow fat disease), as recognised elsewhere (Larsen et. al., 1983). Indoor housing appears to have contributed to the development of this condition because the high temperatures and humidity in these facilities cause rapid decomposition of the fish plus oxidation of the fat. A special vitamin E/selenium additive for inclusion in fish diets was formulated because the standard vitamin/mineral premix is not usually added to fish.

Gout - this was rarely seen on Zimbabwe crocodile farms until the last two years. The reason for the recent increase in incidence and the pathogenesis of the condition are not proven but are believed to be associated with the supplementation of higher levels of calcium (up to 2.5% on a dry matter basis) in an attempt to correct nutritional osteomalacia. The kidneys may become very distended with accumulated urates, resulting in destruction of most of the parenchyma. Less common is the accumulation of urates in the peri-articular tissue.

In conclusion, while disease plays much less of a role in the economics of crocodile farming than was the case ten years ago, there are a number of conditions that still require investigation and, at times, vigorous control measures. The veterinarian's input remains important, especially to increase the efficiency of production in an industry whose viability is now open to question.
References


INTRODUCTION

This short paper is a summary of a project on the feeding ecology of the Nile crocodile in the Zambezi valley in both Zimbabwe and Mozambique (Figure 1).

The primary objective of this study was to assess the effect of crocodiles on the fish populations of Lake Kariba. The lake supports both a successful crocodile management scheme, based on sustainable utilization, and a burgeoning artisanal or inshore fishery. There has been considerable expansion of the fishery since independence in 1980 (Murphree et al., 1989) and consequently there is pressure to open up areas previously closed to fishing. Conflict between fishermen and crocodiles exists (Chimbuya and Hutton, 1988) with many of the problems centering around competition for the resource. This study represents the first attempt to estimate fish consumption by crocodiles from a natural system which may be more typical of other places in Africa, as previous studies were combinations of data from several localities (Cott, 1961) or from "atypical" populations (Graham, 1968; Hutton, 1984).

The crocodile is protected in Zimbabwe and all samples were taken from live animals which were subsequently released. A commercial cropping programme on Lake Cahora Bassa in Mozambique allowed the collection of data and samples from a shot sample (Games et al., 1989).

STUDY AREAS

The Zambezi river rises in the highlands of Angola and Zambia and flows for more than 2,500 km through six countries before reaching the Indian Ocean. Two giant artificial lakes have been built on the river at Kariba and Cahora Bassa (Figure 1).

Lake Kariba has an area of 5,364 km² and a volume of 156.5 km³ at a mean operating level of 485 m a.s.l. A succession of drought years since 1980 has depressed the mean operating level of the lake to 479 m a.s.l., where it remained throughout the study period. A study site was chosen in the Ume estuary which is protected on one side by the Matusadona National Park (Figure 2) and is relatively undisturbed by egg collection activities. Lake Kariba is one of the more intensively studied lakes in Africa and a large body of information on all aspects of its limnology and ecology exists (e.g. Balon and Coche, 1974; Bowmaker, 1973; J.M. Hutton Pvt. Ltd., 1991; Marshall, 1984).

The lake supports both inshore and pelagic (kapenta) fisheries. They are different not only in the habitat exploited, but also in capital input and yields. The kapenta fishery began in 1973 and in 1984 produced 10,404 t, almost 11 times as much as the more primitive and undercapitalized inshore fishery (Bourdillon, et al., 1985).
Lake Cahora Bassa has a shoreline of approximately 1200 km² and a surface area of 2665 km² when at the planned operating level of 326 m a.s.l. (Bernacsek and Lopes, 1984). Since 1981 the mean operating level has dropped to 315 m a.s.l. and this has led to an unstable situation at the head of the lake close the Zimbabwean border (the Zumbo basin) with a fluctuating lake/river interface. Most samples were collected in this basin.

**Figure 1: The Zambezi River showing Lakes Kariba and Cahora Bassa**

**NUMBERS AND POPULATION STRUCTURE**

The age structure and size of two populations was estimated for the Zambezi river, the second study site being located 300 km downstream from Lake Kariba in Mozambique using methods summarised in Bayliss (1988) and Graham (1988). The investigation at the Mozambican study site was an opportunistic one with its principal aim to obtain a sample of larger crocodiles as these were proving difficult to catch in Lake Kariba. Extensive work went into estimating the size of the Mozambican population using several methods (aerial survey, spotlight counts, cropping and nest counts) were available and was possible to ascertain if they gave similar results. Population estimates from nesting data did agree with other methods and consequently this puts confidence in the population estimates from nest counts for Lake Kariba. The mean population estimate for the Zimbabwean side of Lake Kariba was 6500 crocodiles of all sizes with approximately 3500 of these being larger than 1.2 m total length (i.e. sub-adults and adults). This gives an estimated density of 3.51 animals per kilometre of shoreline. The maximum estimate using correction factors from Hutton and Woolhouse (1990) was approximately 11500 animals with nearly 6000 of these being sub-adults and adults. However, it should be remembered that in recent years attempts are being made to collect all eggs from
areas outside the National Parks and this will affect recruitment into the population. Also Zimbabwe’s release programme of farmed animals is underway and this will also affect the numbers and size and age structure of the population. Using the size structure of the Zambezi population in three broad categories was assessed from cropping and was compared with data from the literature. Mean figures of 48% juveniles, 32% sub-adults and 20% adults were used for the final calculations.

Figure 2: Lake Kariba (Zimbabwe shore only) showing the Ume estuary

FEEDING

Using a new method of analysis for stomach contents (Webb and Hollis, 1990) this study showed some interesting dietary changes within the juvenile size class (animals < 700mm SVL). Lake Kariba does not support crabs and consequently juvenile crocodiles have to do without this potentially important nutrient source. The juveniles appear to feed on terrestrial insects, small mammals and frogs at low levels initially until they are about 300mm SVL when their intake increases dramatically (from approximately 0.2 g d⁻¹ for juveniles < 300mm SVL and increasing to a peak of + 1 g d⁻¹ for juveniles > 300mm SVL). This increase is associated
with a shift from terrestrial to aquatic invertebrates in their diet. High water levels were associated with increased amounts of food in the stomachs. This was contrary to what was expected as the high water period occurs during the cool season and it was suggested that any effects of the cool season are masked by the high temperatures in the Zambezi valley.

The importance of fish in the diet of crocodiles increases while they are between 700 mm SVL and 1300 mm SVL and, when estimated by weight, accounts for 98% of the diet. This figure declines to around 33% in adult crocodiles. There was no compelling evidence to support Cott’s (1961) theory that they frequently eat clariids. It should be noted that this was the first study of feeding in large Nile crocodiles that did not require wholesale slaughter in the name of science (Gans and Pooley, 1976). The Mozambican data (taken from a commercial cropping exercise which this study did not initiate or support) confirmed these conclusions and helped to put confidence in the smaller sub-adult sample from Lake Kariba. Political problems in Mozambique unfortunately meant that the data was only collected during a single time of year but this makes the data more comparable with Cott’s (1961) data.

**DIGESTION**

Rates of digestion were investigated in different size classes of crocodiles. The effect of temperature and integument type of the prey on digestion rate was ascertained in juvenile crocodiles. Fish were digested to 10% of their original volume after 2 days in the stomach. This information was necessary in order to be able to assign an age to prey items found in wild crocodile stomachs and it was used to estimate feeding frequencies.

**CONDITION**

Condition in juvenile crocodiles was significantly affected by water level but not by season. Comparisons between the hot Zambezi valley and the cooler Lake Ngezi showed that the Ngezi animals (living in less than ideal conditions at the edge of their demographic range) were in better condition. It is hypothesized that this could be attributed to the presence of crabs in Lake Ngezi which make up 51% of their diet at this locality (Hutton, 1984).

**GROWTH AND AGEING**

Using skeletochronology (Hutton, 1986; Games, 1991) it was shown that crocodiles grew faster in the Zambezi valley (both study sites) and matured some 15 years earlier than in Lake Ngezi. It appeared that juveniles grew slowly for the first two years and then the growth rate increased until about 1 m TL after which it declined again. Females matured at between 15 and 20 years of age. The growth curves constructed from femurs from Cahora Bassa were similar which suggests that they may be a true representation of growth in wild Nile crocodiles. It was estimated that a female crocodile in Lake Kariba will spend 6% of her life as a juvenile, 19% as a sub-adult and 75% as an adult. As males grow quicker they will spend 6% as juveniles, 11% as sub-adults and 83% as adults (average life span assumed to be 80 years).

**FEEDING FREQUENCY AND COMPETITION WITH THE ARTISANAL FISHERY**

Wild juvenile crocodiles ate small amounts of food compared to captive juveniles where they were fed ad lib but the data suggest that they were more efficient at converting it. Using the feeding frequencies an annual estimate of fish consumption from Lake Kariba was proposed (mean = 140.14 tonnes; upper estimate 225.39 tonnes). This was the first time that this had
been done for a typical population. Graham (1968) attempted this for a population living Lake Turkana, Kenya, but admits that this may not be representative of other populations in Africa as the lake is surrounded by a desert. He also assumed a rate of feeding extrapolated from scanty data on captive animals.

If the boundaries of the fishing areas on the Zimbabwean side of Lake Kariba are examined in relation to concentrations of crocodiles it can be seen that they are generally mutually exclusive (Figure 3). There are some exceptions to this but it would appear that most of the crocodiles are concentrated in the river estuaries which are closed to artisanal fishing. The exclusion of the estuaries was not for the protection of the crocodiles but rather to protect the fish and allow them to breed in these areas.

If the estimate of total offtake is accepted then crocodiles (working with the upper estimate of the population size) are only eating the approximate equivalent of 10% of what is removed by the artisanal fishery (6.3% if the mean population estimate is used). It should be stressed that they are not taking 10% of the fisherman's crop but rather an additional tonnage. Using a production estimate of fish tonnage per annum (44 091 t year\(^{-1}\) for the littoral species in Lake Kariba; calculated by multiplying the standing crop by a production to biomass ratio which is specific to species - Hustler and Marshall, 1990; Mahon and Balon, 1977) it can be seen that the crocodile population is removing only 0.5% of this amount. Looking at the problem from another aspect it is speculated that an average female crocodile will eat approximately 1 841 kg of fish in an 80 year life span while a male will consume 1 671 kg.

CONCLUSION

In conclusion it appears that there is no major competition between the crocodiles and fishermen for the fish resources of Lake Kariba. The crocodile industry is valuable and provides income at both the local and national level and also generates foreign currency (an estimated US $3 million in 1990). Further zonation of the shoreline to exclude fishermen from crocodile areas is not a desirable option but perhaps thought should be given to removing crocodiles from heavily fished areas, preferably by trapping as it is possible that these animals will eventually be caught in nets and drowned. Their removal will also be seen as an attempt to balance issues affecting the artisanal fishery as perhaps the major source of conflict between fishermen and crocodiles is the destruction of nets; these are expensive to replace and time consuming to repair. This exercise is already underway with the removal of 43 large crocodiles from sensitive areas in 1992.

Although there may be several sources of error in the estimate of intake of fish by crocodiles from Lake Kariba (e.g. numbers, feeding interval, mean prey size) it is evident that this study has achieved its major objective. Information of this nature will be extremely important when management decisions are made, especially as one can only expect the conflict (real or imagined) between crocodiles and fishermen to increase. Lake Kariba may be representative of other lakes which sustain African artisanal fisheries (e.g. Lakes Victoria, Tanganyika and Malawi).
Figure 3: Lake Kariba showing the relationship between the inshore fishing concessions and the major crocodile concentrations.

Legend:

- Fishing Areas
- Current Artisanal
- Nest areas found on open shorelines
- Nest areas found in minor inlets
- Nest areas found in major inlets

Total % of nests & % nesting in major inlets:

- 3.0%
- 2.9%
- 67.3%

Map shows:
- Mwendo
- Ruzhinhu
- Sangedo
- Nyadza
- Nyache Catch
t - 90%
- Estuary Nyache
- Estuary 12.2%
- Estuary 6.6%
- Estuary 6.9%
- Estuary 11.4%
- Estuary 11.2%
- Estuary 4.3%
- Estuary 5.7%
- Estuary 5.1%

Shoreline Malesungano NP = 15.5%
ACKNOWLEDGEMENTS

This study was funded by the University of Zimbabwe and SAREC (Sweden). The Department of National Parks and Wildlife Management (Zimbabwe) gave permission for the fieldwork.

REFERENCES


THE STATUS AND DISTRIBUTION OF CROCODILES IN TANZANIA

Ian Games
P.O. Box U.A. 296
HARARE
ZIMBABWE

Emmanuel Severre
Wildlife Division
P.O. Box 1994
DAR-ES-SALAAM
TANZANIA

INTRODUCTION

Tanzania is one of the largest countries in eastern and southern Africa with an area of almost one million square kilometers. There are 13 major rivers and 5 large lakes and many of these are in protected areas.

Tello (1985) surveyed a number of rivers in the Selous but the results of this survey have not been obtainable. However, he estimated a total population of 74,000 crocodiles in Tanzania. Hirji (1986) surveyed Lake Rukwa and recommended the cropping of 10,000 animals per annum on very little supporting evidence. Kataliwa and Lema (1988) estimated a population of +76,000 crocodiles in Tanzania, largely on information taken from Tello’s report.

In 1988, 1989 and 1990, supported largely by funding from the Tanzanian government, Internationaler Reptilfed-Verband E.V. (Germany), Soebele Nouvelle France-Croco (France), CITES, Hambo Crocodile project (Tanzania) and Tuela Arts (Tanzania), and fueled by Tanzania’s desire to have adequate survey data to present at the CITES meetings, a number of surveys were carried out (Hutton and Kataliwa, 1988; Games and Severre, 1989; Games and Severre, 1990). This paper is a summary of the information obtained during the 1990 survey with some discussion of the 1988 and 1989 surveys.

The 1988 survey covered the Rufigi and Ruaha rivers in March when the rivers were still in flood. This was a preliminary survey for the CITES Nile Crocodile Project (Hutton and Games, 1992). In 1989 funding was made available for a country-wide survey but owing to unforeseen circumstances only the Rufigi, Ruaha and Kilombero rivers were surveyed. This survey was carried out in October when conditions were ideal for surveying crocodiles.

The 1990 survey (again carried out in October) investigated crocodile densities in 13 rivers and 5 lakes. The survey was limited by time, funds and suitable aircraft and did not establish baseline data for a monitoring programme. The principal aim was to survey as much suitable crocodile habitat as possible and to assess crocodile abundance in broad terms.
METHODS

Three different aircraft and four different pilots were used during the 1990 survey. For most counts a single engine, four seater Cessna 182, with a pilot and two observers was used. Fuel was available from Dar-es-Salaam, Dodoma, Tabora, Arusha and Mwanza. Drums of aviation fuel were placed in the Ruaha National Park (Msembe) and the Selous Game Reserve (Beho-Beho). On one occasion a six seater aircraft (Cessna 185) was available and was used to assess correction factors for two observers using the method outlined by Magnusson, Caughley and Grigg (1978). Counting was carried out from alternate sides of the aircraft (either one side or the other had a better view of the water) at variable heights and speeds depending on the terrain and the morphology of the river. Some large rivers were counted from level flight, simultaneously on both sides of the aircraft.

Rivers and lakes were selected for survey from maps by their ease of access and reputed populations of crocodiles (information from Dept. of Wildlife officials and hunters). As very few of these rivers had been seen before by the survey team it was not possible to establish strata of similar character before the survey. Noticeable physical features and survey and flight times were recorded to aid subsequent stratification and sub-division. Precision estimates (expressed as the co-efficient of variation [CV]) were calculated from sub-divisions.

During the surveys an estimate was made of percent coverage of the available habitat. This was largely subjective but it allowed some correction between channels which were intensely sinuous and very difficult to follow and those which were broad and easy to follow. All density estimates used in tables are adjusted for the percentage coverage estimate.

Spotlight counts of crocodiles at night were carried out in the Selous Game Reserve. Crocodiles in three different sections of river and one lake were counted in the beam of a 50 000 candle power spotlight. These figures were used to correct the aerial surveys.

RESULTS AND DISCUSSION

AERIAL SURVEYS

A brief description of the rivers and lakes surveyed is shown in Table 1. Sections of the rivers that were surveyed are marked in Figure 1. The type of river was important as broad open rivers with sandbanks were easier to survey than intensely meandering channels with extensive overhanging vegetation. Crocodile densities varied greatly between 0 and 11.24 crocodiles per kilometer (Table 2). The following is a brief summary of each river surveyed.

Morogoro Region - Selous Game Reserve

The Selous Game reserve is situated on the south-east coastal plain and covers an area of approximately 43 000 km² (Tanzania Wildlife Department - Selous Census). The Rufiji is the largest river in Tanzania and its drainage basin covers most of southern Tanzania. The Ruaha, Kilombero and Luwego rivers are its major feeders (Figure 1). Parts of the Selous drainage were surveyed in 1963, 1988 and 1989 (Table 3).
Figure 1: Crocodile Survey - Tanzania 1990
Table 1: Brief descriptions of trees and lakes covered by 1999 aerial survey.

<table>
<thead>
<tr>
<th>AREA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Project</td>
<td>Tree</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Crocodile densities in some Tanzanian rivers as indicated by aerial survey.

<table>
<thead>
<tr>
<th>AREA</th>
<th>RIVER OR LAKE</th>
<th>TIME OF SURVEY</th>
<th>% COVERAGE</th>
<th>km SURVEYED</th>
<th>COMMENTS</th>
<th>CROCS/ km</th>
<th>ADJUSTED CROCS/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morogoro Region</td>
<td>Upper Rufiji</td>
<td>1200-1233</td>
<td>70</td>
<td>101</td>
<td>Overcast with light rain prior to survey</td>
<td>2.23</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>Lower Rufiji</td>
<td>1055-1110</td>
<td>70</td>
<td>50</td>
<td>Overcast with light rain prior to survey</td>
<td>7.46</td>
<td>9.70</td>
</tr>
<tr>
<td></td>
<td>Rufiji Lakes</td>
<td>1115-1150</td>
<td>80</td>
<td>55</td>
<td>Overcast with light rain prior to survey</td>
<td>7.05</td>
<td>9.17</td>
</tr>
<tr>
<td></td>
<td>Ruaha</td>
<td>1335-1405</td>
<td>60</td>
<td>104</td>
<td>Overcast with light rain prior to survey/ Heavy rain</td>
<td>1.12</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>Kilombero</td>
<td>1234-1315</td>
<td>70</td>
<td>100</td>
<td>Overcast with light rain prior to survey</td>
<td>2.20</td>
<td>2.86</td>
</tr>
<tr>
<td>Iringa Region</td>
<td>Lake Mtera</td>
<td>0830-0840</td>
<td>35</td>
<td></td>
<td>Extensive reedbeds</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ruaha National Park</td>
<td>Ruaha</td>
<td>0840-0909</td>
<td>60</td>
<td>95</td>
<td>Cloudless day</td>
<td>0.11</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0922-0950</td>
<td>70</td>
<td>75</td>
<td>Cloudless day</td>
<td>3.59</td>
<td>4.67</td>
</tr>
<tr>
<td>Ruaha region</td>
<td>Rungwa</td>
<td>1125-1210</td>
<td>60</td>
<td>165</td>
<td>Moderate cloud cover</td>
<td>0.33</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Kavuu</td>
<td>1434-1454</td>
<td>50</td>
<td>94</td>
<td>Moderate cloud cover</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Lake Rukwa</td>
<td>1335-1415</td>
<td>20</td>
<td>80</td>
<td>Moderate cloud cover</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Lake Chada</td>
<td>1454-1505</td>
<td>50</td>
<td>15</td>
<td>Moderate cloud cover</td>
<td>7.49</td>
<td>11.21</td>
</tr>
<tr>
<td>Tabora/Kigoma Region</td>
<td>Ugailla</td>
<td>0850-1028</td>
<td>60</td>
<td>390</td>
<td>Moderate cloud cover</td>
<td>0.48</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>U. Malagarasi</td>
<td>1242-1335</td>
<td>60</td>
<td>175</td>
<td>Moderate cloud cover</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>L. Malagaras</td>
<td>1030-1107</td>
<td>40</td>
<td>95</td>
<td>Moderate cloud cover</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Mwanza Region</td>
<td>Lake Victoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Victoria</td>
<td>Rubondo Island</td>
<td>1055-1140</td>
<td>70</td>
<td>140</td>
<td>100 % cloud</td>
<td>0.48</td>
<td>0.62</td>
</tr>
<tr>
<td>Mara Region</td>
<td>Grumeti/Orangi</td>
<td>1545-1630</td>
<td>50</td>
<td>107</td>
<td>Overcast</td>
<td>0.55</td>
<td>0.83</td>
</tr>
<tr>
<td>Serengeti National Park</td>
<td>Seronera</td>
<td>1630-1645</td>
<td>50</td>
<td>30</td>
<td>Overcast</td>
<td>0.26</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Mara</td>
<td>0940-1006</td>
<td>70</td>
<td>60</td>
<td>Overcast with drizzle</td>
<td>0.68</td>
<td>0.88</td>
</tr>
<tr>
<td>Kilimanjaro/Tanga Region</td>
<td>Upper Pangani</td>
<td>1230-1305</td>
<td>10</td>
<td>125</td>
<td>Light cloud</td>
<td>0.09</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Lower Pangani</td>
<td>1602-1705</td>
<td>50</td>
<td>220</td>
<td>Light cloud</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Lake Nyumba na Mungu</td>
<td>1305-1315</td>
<td>25</td>
<td></td>
<td>Light cloud</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
**Rufiji River (Figure 2)**

The Rufiji was divided into two strata. The Upper Rufiji is a wide sandy river with moderate crocodile densities between 2.1 and 4.94 crocodiles/km (mean = 2.89; Table 1). In 1963 densities were estimated to be between 1.95 and 3.51 crocodiles/km (Graham and Bell, 1963) while Hutton and Katalihwa (1988) estimated a density of 0.98 crocodiles/km while the river was in flood.

The lower Rufiji (within the Selous) is a very wide sandy river which flows into a palm swamp. The main channels have extensive sandbanks but the river changed its course in 1980. The new channels are generally narrower and some have mud banks. Estimates of crocodile densities are high and range from 0.91 to 34.78 crocodiles/km (mean = 10.82; Table 1).

![Figure 2: Selous crocodile survey - 1990](image)

**Rufiji Lakes (Figure 2)**

North of the main Rufiji channel are five lakes one of which is fed by thermal springs. Travelling from west to east the lakes are named Tagalalla, Manza, Nzerakera, Siwando and Mzizima respectively. Some of these shallow lakes are connected to the river allowing movement of crocodiles. Density estimates were high ranging from 2.99 crocodiles/km in Lake Mzizima to 18.07 crocodiles/km in Lake Tagalalla.
Ruaha River (Figure 2)

The Ruaha river within the Selous Game Reserve has two strata. The upstream end flows over rock bars while the central section is wide and sandy. Before entering the Rufiji it again flows over rocks. Crocodile densities were moderate - 1.57 crocodiles/km - with a range of between 0.5 to 2.74. This is comparable with previous counts (1.56 crocodiles/km - Hutton and Katalihwa, 1988 and 1.77 crocodiles/km - Games and Severre, 1989; Table 3).

Kilombero River (Figure 2)

The Kilombero river is fed by the Kilombero swamp (5 500 km² approx) and is contained within a single channel for most of its course within the Selous. This channel is interspersed with rock bars and has mud banks. The upper section (Ifakara bridge to Bomalanga meanders) through a broad floodplain with extensive sandbanks. Crocodile densities ranged between 1.04 and 8.88 crocodiles/km (mean 2.86; Table 2) within the game reserve but dropped to 0.34 crocodiles/km once outside the boundary.

1989 survey

The density (crocodiles/km) for the 1989 survey are presented in Figure 3 as some areas were not covered in the present survey.

Figure 3: Selous crocodile survey - 1989

![Map of Selous Game Reserve with crocodile density distribution for 1989 survey](image-url)
Table 3. Summary of crocodile densities in the Selous Game Reserve as estimated by aerial survey.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Rufiji</td>
<td>1.95 - 3.51</td>
<td>0.98</td>
<td>3.15</td>
<td>2.89</td>
</tr>
<tr>
<td>Lower Rufiji</td>
<td></td>
<td></td>
<td>6.75</td>
<td>11.83</td>
</tr>
<tr>
<td>Rufiji Lakes</td>
<td></td>
<td></td>
<td>3.35</td>
<td>8.46</td>
</tr>
<tr>
<td>Ruaha</td>
<td>1.56</td>
<td>1.77</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>Kilombero</td>
<td>0.28</td>
<td>7.74</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>Upper Luwego</td>
<td></td>
<td></td>
<td></td>
<td>2.74</td>
</tr>
<tr>
<td>Lower Luwego</td>
<td>0.33</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Iringa Region - Ruaha National Park

Ruaha River (Figure 4)

This river can be divided into two strata. Upstream of the park headquarters at Msembe (Figure 4) the river is moderately wide flowing over rocks. There were occasional deep pools. Downstream of Msembe it is a very wide and sandy meandering river. The water is very shallow and there are few pools. Crocodile densities were medium in the upstream section (4.67 crocodiles/km) and low in the downstream section (0.15 crocodiles/km).

Most of the crocodiles were congregated in large pools upstream from Msembe (31.72 crocodiles/km) and once past the Foxtreks camp (Figure 4) densities were low (0.86 crocodiles/km). There was a noticeable decrease once the park boundary was reached.

Figure 4: Upper Ruaha crocodile survey - 1990
Lake Mtera (Figure 4)

This is a new lake which supports a high density of fishermen. No crocodiles were seen during a survey of approximately 35 km of the western end.

Rukwa Region - Katavi Plains National Park

Lake Rukwa (Figure 5)

The level of Lake Rukwa has recently risen and this was evidenced by drowned trees along the shoreline. Channels of the Rungwa and Kavuu rivers were located by the drowned tree fringe which extended out into the lake. Part of the western and northern shores were surveyed but only three crocodiles were seen. Lake Rukwa has the reputation of supporting a large crocodile population (e.g. Hirji, 1986) and more than 17 000 crocodiles are thought to have been shot here (Hutton and Katalihwa, 1988). Lakes are notoriously difficult to survey and a survey of Cahora Bassa in Mozambique in 1987 showed very few crocodiles in an area that was later to support a cropping exercise of 3 000 animals (Games, Zohlo and Chande, 1988). Further investigation of Lake Rukwa is clearly needed.

Figure 5: Lake Rukwa, Lake Chada, Kavuu and Rungwa crocodile surveys - 1990
**Rungwa River (Figure 5)**

This river has three distinct strata. Between Lake Rukwa and the Rungwa falls it is a wide meandering sandy river. For approximately 65 km upstream of Rungwa falls it is a moderately wide river flowing over sand and rock bars. The banks are lightly wooded. Upstream of this point it becomes a very narrow and sinuous channel with an extensive tree overhang, which made sighting crocodiles difficult. There was a low overall crocodile density (0.46 crocodiles/km) with lower densities being found in the upstream strata (0.21 crocodiles/km). The downstream strata between the falls and the constricted channel had a higher density (0.87 crocodiles/km).

**Kavuu River (Figure 5)**

This is a very sinuous and small river with a moderate vegetation overhang which is fed from Lake Chada and the surrounding floodplains. There were people and livestock all the way from the Katavi National Park boundary to Lake Rukwa but there was also a surprising amount of wildlife. Crocodile density was low and estimated to be 0.03 crocodiles/km.

**Lake Chada (Figure 5)**

Lake Chada is a large floodplain area within the Katavi Plains National Park. When surveyed there were an estimated 15 km of channels and pools which were full of hippopotami. Crocodile density was estimated to be 11.21 crocodiles/km.

**Tabora/Kigoma Region - Ugalla Game Reserve**

**Ugalla River (Figure 6)**

The upstream section of this river is a series of deep pools. These eventually coalesce into a single channel flowing through a broad floodplain. After reaching the Mpande railway bridge the river flows into a series of swamp areas which culminate near Lake Sagara. Crocodile densities in these two sections was estimated to be 0.31 crocodiles/km. Downstream of Lake Sagara it flows through a single channel before joining the Malagarasi. Crocodile densities were estimated to be 2.38 crocodiles/km in this section. The average density for the Ugalla was estimated to be 0.67 crocodiles/km.

**Malagarasi River (Figure 6)**

The Malagarasi river can be divided into five strata, two of which were not surveyed. In the upstream section it is confined to a single meandering channel. Crocodile densities were initially low (0.17 crocodiles/km) but increased as it approached the papyrus swamp (1.16 crocodiles/km) near Lake Nyamagomo. The papyrus swamp was not surveyed. On emerging from the swamp it flows through a single steep-sided channel to the Ugalla junction. The average estimated density here was low (0.84 crocodiles/km) but most of these were found in a very short section near the Ugalla junction where the density was estimated to be 5.75 crocodiles/km. Between the Ugalla junction and Uvinza the river flowed over rocks and through a wide braided channel system. Crocodile densities were low (0.18 crocodiles/km) in this section. Shortly after Uvinza the river flows through a series of spectacular gorges which were not surveyed. No crocodiles were counted in the final 30 km of river between the end of the gorges and the delta on Lake Tanganyika. The whole of this section is densely populated.
with fishermen and subsistence farmers. The average density for the Malagarasi was 0.39 crocodiles/km.

**Figure 6: Ugalla and Malagarasi crocodile surveys - 1990**

*Figure map showing distribution of crocodiles along the Ugalla and Malagarasi regions.*

**Mwanza Region - Rubondo National Park**

Rubondo Island - Rubondo National Park

The entire island is a national park and is situated a few kilometers offshore. The island is covered with tropical forest to the narrow beaches. Crocodile densities were low (0.62 crocodiles/km) but a masking fringe of Mimosa made crocodile spotting difficult in some areas. The highest densities were found on the south-eastern shoreline (0.95 crocodiles/km).

**Lake Victoria**

Although not formally surveyed the flight path was over the Speke Gulf shoreline. The whole area is densely populated and cultivation extends to the lake. It is doubtful that there are many crocodiles along this shoreline.
Mara Region Serengeti National Park

Grumeti/Orangi River (Figure 7)

This is a narrow, tightly meandering river with a thick tree fringe and overhang. Overall crocodile densities were low (0.83 crocodiles/km) but most of these were contained within a short section near the Kirawira research station where densities were estimated to be 8.75 crocodiles/km. Most of the sections surveyed were within the Serengeti National Park.

Seronera River (Figure 7)

This is a short and very narrow tributary of the Orangi river which had a low estimated density of crocodiles (0.39 crocodiles/km). All of the river was within the Serengeti National Park.

Mara River (Figure 7)

This is a meandering, moderately wide river with part of its course within the Serengeti National Park. There were many rock and sand bars. Within the National Park the average density was estimated to be 0.88 crocodiles/km but was as high as 1.37 crocodiles/km near the Kenyan border. No crocodiles were seen outside the National Park.

Figure 7: Serengeti crocodile survey - 1990
Kilimanjaro/Tanga Region

Pangani River

This is a very sinuous river with an extensive tree and reed overhang. There are very few sandbanks and the river can be divided into two strata. The upstream section flows through an extensive floodplain which was still holding water. Crocodile density was estimated at 0.17 crocodiles/km. The downstream section is similar to the upstream section but there are no swamp areas. Density was estimated to be 0.02 crocodiles/km.

Lake Nyumba ya Mungu

This is a new lake which, like Lake Mtera, is heavily settled with fishermen. No crocodiles were seen.

OBSERVER CORRECTION FACTORS

On one occasion it was possible to carry out a tandem count which allows some estimation of observer error. The correction factor for observer 1 (Games) was estimated to be 1.8 and for observer 2 (Liyimo) it was estimated to be 4.2. This means that any sightings by those observers should be multiplied by these correction factors if the aim is to speculate about a possible total population estimate.

SPOTLIGHT COUNTS AND CORRECTION FACTORS

Night counts were carried out in the Kilombero and Rufiji rivers and in Lake Tagalalla (Tables 4, 5 and 6).

In the Bomalanga area of the Kilombero river both banks were counted for 6 km. This channel was surveyed from the air two weeks later. The night count showed 132 crocodiles while the aerial survey located 41 crocodiles. This means that the correction factor is 3.22. It is doubtful that this can be extrapolated to the entire length of the Kilombero as much of the channel flowing towards Shiguli falls is very different in character (the Bomalanga area is a myriad of channels flowing through reeded sandbanks while the rest of the river flows down a single channel contained within steep mud-banks). This section is probably more similar to sections of the lower Rufiji.

Two sections of the lower Rufiji were surveyed for crocodiles at night. In a 12 km stretch of the river from the Kidai ferry to opposite Lake Tagalalla 304 crocodiles were counted. During this survey only the northern bank was surveyed. It was estimated from 1:50 000 (1966) maps that there were 32 km of shoreline between these two points. A correction of 2.6 would yield an estimate of 790 crocodiles. A total of 195 crocodiles were counted from the air in this section which would indicate a correction factor for the aerial count of 4.1. A similar correction is calculated for the section of river from Rufiji river camp (reserve boundary) to Lake Nzerakera. The night count (both banks) revealed 168 crocodiles while 39 animals were counted from the air giving a correction factor of 4.3.

The entire shoreline of Lake Tagalalla was surveyed at night and 816 crocodiles were counted. An aerial survey showed 181 animals which is a correction factor of 4.5.
Table 4. Details of night counts in the Kilombero river, Tanzania, 1990 (CV = 19%).

<table>
<thead>
<tr>
<th>Section</th>
<th>Length (km)</th>
<th>Nos. Crocs</th>
<th>Crocs/km</th>
<th>d²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp-Junction</td>
<td>2</td>
<td>36</td>
<td>18</td>
<td>324</td>
</tr>
<tr>
<td>Junction-Tree</td>
<td>1.5</td>
<td>36</td>
<td>24</td>
<td>576</td>
</tr>
<tr>
<td>Tree-Single Channel</td>
<td>2</td>
<td>27</td>
<td>13.5</td>
<td>182.25</td>
</tr>
<tr>
<td>Channel-Game camp</td>
<td>2</td>
<td>15</td>
<td>7.5</td>
<td>56.25</td>
</tr>
<tr>
<td>Game camp-end</td>
<td>1.5</td>
<td>18</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>9</strong></td>
<td><strong>132</strong></td>
<td><strong>75</strong></td>
<td><strong>1282.25</strong></td>
</tr>
</tbody>
</table>

Table 5. Details of night count - Lake Tagalalla (CV = 2.19%).

<table>
<thead>
<tr>
<th>Section</th>
<th>Length (km)</th>
<th>Nos. Crocs</th>
<th>Crocs/km</th>
<th>d²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp-Entrance</td>
<td>7</td>
<td>435</td>
<td>62.12</td>
<td>3861.734</td>
</tr>
<tr>
<td>Entrance-Camp</td>
<td>6</td>
<td>381</td>
<td>63.5</td>
<td>4032.250</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>13</strong></td>
<td><strong>816</strong></td>
<td><strong>125.62</strong></td>
<td><strong>7893.984</strong></td>
</tr>
</tbody>
</table>

Table 6. Details of night counts on the Rufiji river

<table>
<thead>
<tr>
<th>Section</th>
<th>Length (km)</th>
<th>Nos. Crocs</th>
<th>Crocs/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidai-Tagallala</td>
<td>9</td>
<td>304</td>
<td>33.77</td>
</tr>
<tr>
<td>Nzerakera-Rufiji</td>
<td>12</td>
<td>168</td>
<td>16.6</td>
</tr>
</tbody>
</table>

The channel lengths and lake-shores surveyed during the aerial count in the lower Rufiji total 105 km. It is estimated that 30 - 50% were not covered, especially where the river has forged a new course. The lower estimate would put the shoreline and channels at 135 km. Speculation on the total amount of crocodiles in the lower Rufiji alone is as follows:

Total number of crocodiles seen from the air | 804
Channel correction (1.3)                      | 1045
Night count correction (4.2)                  | 4390
The numbers of crocodiles during a night count can be as little as 10% of the total population but is usually between 30 and 60% (Hutton and Woolhouse, 1989). This would give upper and lower estimates of 7 024 and 5 707 respectively.

GENERAL

There were a number of problems associated with this survey. All of these tend to indicate that the count were underestimates and they are detailed below.

Observers, although proficient and experienced on large mammal counts, were new and inexperienced in counting crocodiles. The correction factor for the one observer tested during a tandem count was 4.1.

Many of the rivers were surveyed during the middle of the day. This was because of the long distances involved, both transit and survey. It is known that many crocodiles will return to the water during the middle of the day (e.g. Cott, 1961) where they are more difficult to spot from an aeroplane.

The tightly meandering nature of many of the rivers surveyed meant that the percentage covered was less than ideal. This possibly leads to under-estimation which I have attempted to correct (albeit subjectively) by estimating a percent coverage for each river. Densely wooded or reeded banks with overhanging trees also obscured the view of some of the rivers.

Owing to several delays this survey continued into the first of the "short rains". This meant that some surveys were carried out either while it was raining or under very overcast conditions. Although there is no data it is considered that crocodiles are more difficult to spot under these conditions.

If any survey of crocodile densities is to be used for monitoring trends in a population then it should have some measure of precision. The co-efficient of variation (CV), which is the standard error expressed as a percentage of the count, is a common method (Graham, 1988). In crocodile counts estimation of the CV can be achieved in two ways but it should be stressed that these CVs are not comparable between methods.

1). The double counting or tandem method is the simplest and requires that one observer record three categories of sightings - crocodiles seen by himself and not the other observer, crocodiles seen by the other observer but not by himself and crocodiles seen by both observers (Magnusson, Caughley and Grigg, 1978; Graham, 1988). In practice this means that one observer must point out every crocodile seen to the observer/recorder or both observers independently record sightings on maps.

2). The second method is to divide the river into sub-sections and use these as sample counts to estimate the CV (Graham, 1988).

Sample counting is problematic as some rivers are lacking noticeable features to form the sample boundaries and it would be very difficult to replicate these in subsequent surveys. The CV's obtained by this method become very large if there is uneven distribution of crocodiles along the river. Tandem counting has the advantage that observer errors can be estimated and a correction factor calculated. It allows some estimation of variance between observers and the CVs are used to decide if counts are precise enough to indicate trends.
Density estimates were very variable and would be a pointless exercise to take a mean figure and extrapolate to the whole country. One fact which emerges from this survey is that densities are considerable reduced outside protected areas and this was noted for a number of rivers (e.g. Kavuu/Lake Chada, Rufiji, Kilombero, Ruaha, Mara, Grumeti). This indicates that protection is having a beneficial effect, at least on the crocodile population.

The low densities (often 0.00) found outside the protected areas also indicates that crocodile populations will continue to decline when in competition with humans. One possible way to stop this decline is to utilize these populations for ranching and farming operations. Lake Rukwa is one such population that may benefit from such a management policy.

SPECULATION ON EGG PRODUCTION FROM THE LOWER RUFIFI WITHIN THE SELOUS GAME RESERVE

The number of breeding females within a population is related to the total size of that population and this fact is often used to estimate population size from counts of nests (Chabreck, 1963; Graham, 1988). Having speculated on the total size of the population in the lower Rufiji it is then possible to speculate on egg production. The number of crocodiles less than 1.2 m total length is estimated to be approximately 50% of a Nile crocodile population. The number of breeding females within an average Nile crocodile population is estimated to be 1/4 of those crocodiles longer than 1.2 m total length (Games, 1990). Clutch sizes vary greatly but the average for Lake Kariba on the Zambezi river is 45 eggs. If the above figures are taken to be representative of the Selous population then egg production for the lower Rufiji within the reserve can be estimated by:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower estimate of crocodile numbers</td>
<td>5 707</td>
</tr>
<tr>
<td>Numbers longer than 1.2 m total length</td>
<td>2 854</td>
</tr>
<tr>
<td>Number of breeding females</td>
<td>696</td>
</tr>
<tr>
<td>Lower limit for average clutch size</td>
<td>30</td>
</tr>
<tr>
<td>Estimated egg production</td>
<td>20 880</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

Financial support for this survey was provided by Internationaler Reptilienverband E.V. (Germany), Soveve Nouvelle France-Croco (France), Hambo Crocodile project (Tanzania) and Tuede Arts (Tanzania). I thank Dr. Jon Hutton and Dr. Dietrich Jelden of the IUCN Crocodile Specialist Group for initiating this survey and raising the funding. The assistance of Hashim Mbuguli Bonde in Dar-es-Salaam is gratefully acknowledged. Daren Bruessow and Richard Fergusson made the night counts possible and James Maynard is thanked for his participation. Aircraft were ably flown by Lorivi Mbirana, Gerald Bigurube, Charles M'Doe and Charles Trout. Observers were Liyimo, Charles M'Doe, Emmanuel Severre and Gerald Bigurube. Special thanks to Bakari Mbaneo who took time off from his busy schedule to come and rescue us at Rungwa. The support of the Director of Wildlife, Costa M'Ilay, especially by making sure an aircraft was available is greatly appreciated.
REFERENCES

Chabreck, R.H. 1966. Methods of determining the size and composition of alligator populations
in Louisiana. *Proceedings of the South Eastern Association of Game and Fish Commission. 20th
Annual Conference.* 1966:105-112

Unpublished D.Phil. manuscript. University of Zimbabwe.

Reserve and adjacent Game Controlled Areas, Tanzania. September 1989. *Report to the
Director of Wildlife, Tanzania and the CITES Nile crocodile project.*

Games, I. and E.L.M. Severre. 1990. A survey of crocodile densities in Tanzania, October

Games, I., R. Zohlo and B. Chande. 1989. Utilization of the crocodile resource on Lake
crocodile project.*


SADCC Workshop on Management and Utilization of Crocodiles in the SADCC Region of

Hirji, K.N. A preliminary assessment of the crocodile population in Lake Rukwa. *Report to
Serengeti Wildlife Research Institute, Arusha, Tanzania.*


Hutton, J.M. and M. Katalihwa. 1988. The status and distribution of crocodiles in the region

Hutton, J.M. and M.E.J. Woolhouse. 1989. Mark-recapture to assess factors affecting the
proportion of a Nile crocodile population seen during spotlight counts at Ngezi, Zimbabwe, and
the use of spotlight counts to monitor crocodile abundance. *Journal of Applied Ecology 26:*381-
395.

Katalihwa, M. and R. Lema. 1988. The status and management of the Nile crocodile in
Tanzania. *Proceedings of the SADCC Workshop on Management and Utilization of Crocodiles
and H.H. Roth.

ANNEX

THE POSITION OF TANZANIA WITH REGARD TO THE UTILIZATION
OF WILD CROCODILES AND CROCODILE RANCHING
OF THE NILE CROCODILE

ABSTRACT/TRANSCRIPT

2.1 Policy for Crocodile Management

Tanzania's crocodile policy states that crocodiles shall be conserved as stipulated by local conservation laws and CITES guidelines for conservation.

It is intended that all crocodilian modes of utilization benefit local communities. This approach serves to enhance efforts directed to curb illegal trade and dealings in crocodilian parts and derivatives.

2.2 The Management Plan for the Nile crocodile

The management plan is tailored to accommodate protection and utilization of the Nile crocodile.

3.1 The Status of the Nile Crocodile in the Wild

3.1.1 Distribution

Tanzania has an estimated 4000 km of river and 2800 km of lake shoreline. Crocodiles are known to occur in many of these systems.

3.1.2 Population Status

Tello (1985) estimated a total population of 74,000 crocodiles in Tanzania and Hirji (1986) estimated a population of 10,000 in Lake Rukwa alone. Aerial surveys have been carried out in recent years (Hutton and Katalihwa, 1988; Games and Severre, 1989; Games and Severre, 1990) but these were aimed at density estimates rather than total population estimates.

3.1.3 Habitat

Crocodiles occur in stable habitats and especially in protected areas where human activities are limited.
3.1.4 Legal Trade

Local trade in crocodile parts does not exist in Tanzania.

Reports prior to 1961 indicate that there was a thriving international trade in skins (Game Division reports, 1961). During the early 1980's all crocodile skins entering the market were closely monitored. Today wildlife legislation and CITES regulations have put trade in crocodile products under levels of utilization that are not detrimental to the wild populations.

3.1.5 Illegal Trade

Anti-poaching efforts have been strengthened so that wildlife will continue to exist and be utilized in accordance with the paradigm of sustainable development. It is on account of this that illegal trade of crocodile parts or derivatives has been stamped out.

3.1.6 Crocodiles as Problem Animals

There is no doubt that crocodiles are a threat to humans and livestock in Tanzania. It is likely that protection and trade controls have possibly resulted in some local populations of crocodiles increasing and consequently posing an increased threat to people and animals.

An estimated 60 people lose their lives to crocodiles annually as well as a large number of goats, sheep and cattle. Known areas of conflict are the Pangani river (Tanga region), the Ruvumesa river (Mtwara region), the Mara and Grumeti rivers (Mara region) and Lake Rukwa (Rukwa region).

Tanzania would like to invite members of the Crocodile Specialist Group to visit, witness and advise on the matter of allowing continued harvests from the wild population as a means of control.

5.0 Conclusion

It is imperative to recognise the following:

- that the growing crocodile population continues to be a threat to human life and livestock
- Tanzania has strengthened law enforcement efforts at enormous costs which must be realised through trade in species whose populations are not endangered. The crocodile deserves no exception
- that there is a need for members of the Crocodile Specialist Group to visit Tanzania and witness threats posed by crocodiles to humans
- Tanzania needs support in its efforts to downlist the wild crocodile population
- crocodile ranching will continue as described in the proposal presented at the Eighth Conference of the parties to CITES.
STANDARDIZED GRADING & WORLD WIDE TAGGING:
IMPLICATIONS FOR TRADE

DAVID B. HAIRE, III
In order to secure credibility and maintain strength and legitimacy in any organization is to establish a mission statement, act responsibly, and welcome accountability. The IUCN/CSG is very clear in its mission statement of crocodilian conservation. While recognizing the right of the industry to exist and the role it plays in conservation itself. Responsibility and accountability goes without saying. But there are, and will always be opportunities and needs to improve. Standardized international grading of crocodilian and world wide tagging of all marketable crocodilian hides are imperative in building and maintaining strength and credibility within the organization and market.

In initiating my idea of a standardized grading system, I am not suggesting to discount, rewrite, or remove such efforts of the Japan Reptile Association or similar works of those like King & Wilson. Who have published excellent and concise descriptions in explaining correct grading procedures.

There is a need for a simple operable grading standard that would be internationally understood. One which would be conducive to effectively placing market value to crocodilian hides without requiring lengthy
descriptions or complex evaluations.

For years, classic skins have been synonymous with high fashion expensive handbags made primarily from belly/flank areas. This section of the skin has historically been the area considered in grading and ascertaining value. But with increased manufacturing of high fashion belts and small leather goods, along with the need for quality gussetts and bottom for bags and cases, the need arises to include more than belly areas in grading crocodilians and assessing value. As with the JRA standard I, too, agree that the throat area and upper 1/3 of the tail should be considered in the grading of crocodilian's skins. Grading could be easily evaluated by breaking the pattern into six sections. (As shown below).

Gular area, end of legs, and lower tail would not be considered for grading. If missing completely they would indicate a defect in the section adjacent to them.

Grade and value would be determined by the amount of quadrants which contain defects.

Base price would be determined by the market and
would apply to skins of good hide substance and normal width to length proportions, without possessing any marked degree of putrefication and scale slip. These conditions when present, would reduce base price from 25% to 100%. While any other defects would further discount the hide value.

This system could be modified to effectively grade whole caiman skins. Only the areas of commercial value within the quadrents would be considered. Large caimans which posses heavy ossification, only flank, leg, cheeks and chin areas should be considered. While small caiman of such species as Fuscus which can be de-ossified during tanning should be graded as classics are. While osteoderms are characteristic in caiman and some hard belly species of classic skins such as the African crocodile cataphracis and should not be considered as denoting damage. They should do so when considerable presence in any of the quadrents of the large soft belly’s i.e. large American Alligators and Nile Crocodiles.

Size would be recorded in either linear inches from chin to tail or in width by centimeters at 1/3 down the belly at about the fifth bone.

Skins should be pulled and released to measure, but not overly stretched or held to measurement.

Values for fresh skins with good hide substance
would be as follows:

- Skins completely free of defects - Full Base Price
- Skins with one or two quadrants containing defects - 75% Base Price
- Skins with extreme damage in two quadrants or three quadrants containing defects - 50% Base Price
- Skins containing extreme damage in three quadrants or four or more quadrants containing defects - 25% Base Price
- Complete Rejection

Defect would be anything which occurs within the pattern denoting damage, natural and man-made or any marked disruption of the normal pattern—i.e. deformities, irregular umbilical, etc.

If required an agent could provide further descriptive information to explain corresponding grade of hide offered by denoting the quadrants where defects occur.

<table>
<thead>
<tr>
<th>TAG NO.</th>
<th>SIZE (CM)</th>
<th>GRADE</th>
<th>HEAD</th>
<th>BODY</th>
<th>TAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>92001832</td>
<td>34</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92001833</td>
<td>32</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92001834</td>
<td>33</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92001835</td>
<td>31</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92001836</td>
<td>30</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This information could be supplied if necessary for a customer to understand the value of the hides—although designation of grade should be adequate to access market value.

Again, this is only my assertion to simplify the means to convey the value of classic skins. By no means does it attempt to approach the efforts of qualified grading standards of previous systems. But if grading can be done simply and effectively by the average person engaged in the business, then it will be more likely to be employed by the industry as a mandatory standard procedure.

Universal tagging of all marketed crocodilian skins will not only legitimize the market, but will aide in giving identification of graded skins by providing a CITES tag number with a corresponding grade.

Legitimizing the trade in as much as by allowing untagged groups of crocodilian hides found in warehouses, tanneries, and manufacturing facilities by inspectors to be easily recognized as illegal shipments. Records included with shipment showing corresponding tag amounts equaling total amount of skins would decrease chances for extra unlisted skins to be included. This way false harvest and export numbers would be lessened.
Tags should be CITES approved and similar in material, mechanics, shape and order of marking. So they will be easily attached, impossible to remove without breaking and easily read as to species, country of origin, and individual CITES tag number.

Some tag designs are such that they are easily detached after affixing them to the skin. Also, I doubt that significant benefit is realized in the manufacturing of tags within country of species origin. Since the tag represents legitimacy in the industry, it is imperative that all tags manufactured be capable of withstanding tanning and finishing procedures while maintaining its function of identification.

Tagging represents the check in the industry. In order to represent the balance there needs to be a central location for receiving spent tags from finished skins, after being cut for manufacturing of products. Any crust or finished skin left in inventory yearly should be included in an annual CITIES report sent to the same central collecting center as spent tags. This would enable monitoring of skins through the industry from raw to finished product.

Some exceptions and problems will occur, but this will tend to further legitimize the trade — making it more responsible.

Standardized tagging and grading will add
international responsibility, accountability, and understanding to the crocodilian skin trade. But the industry needs to continue to pursue positive ethical practices which will bring attention to those who do not comply in the ethical, responsible, conserving trade which holds first and foremost the sustainability of the resource.

Many times I have been confused in the past as to how the base prices have been set for crocodilians from year to year. Generally, supply and demand are the key factors in establishing market prices. But with fluctuations occurring yearly, too extreme highs and lows, implies other factors exist in determining market price of this limited product.

In speculation, I feel, the following assumptions give some explanation for the irregularities in the trade.

(1) If one can acquire sources for illegal raw material at attractive prices, then by pushing the price of legally taken skins upwards in competitive buying, they not only protect their investment but make it more profitable. Even if prices are pushed for other species, due to similarities of species alone will increase the value of initial illegal investment.

(2) Caiman hunters in Columbia receiving the
equivalent to six dollars U.S. for skins to be marketed from 30 to 60 dollars U.S. by businessmen who can secure tags and export papers, have no less incentive when selling at the same levels to the black market which are able to sell at levels considerably less than the middle man selling legal ones.

(3) When observing so many low quality skins being produced from damaged and putrefied raw material it would be unlikely that the buyer would show a profit unless a good portion of the material was acquired at below market prices illegally.

(4) Under-cutting legal market competitors could easily be achieved by purchasing a percentage of crocodilian production from illegal sources.

Buyer #1 buys 20,000 pcs. @ $60/hide legal
average cost $60/hide

Buyer #2 buys 15,000 pcs. @ $60/hide legal
10,000 pcs. @ $20/hide illegal
average cost $44/hide

(Even with 10% complete fall-out from putrefication due to poor handing)

average cost <$46/hide

(5) Price and demand could be artificially inflated for legal crocodilians when needed to front and show false legitimacy for tanneries utilizing
illegal skins in their productions.

We have to rely on the market and industry to maintain the credibility of itself. For without demand there would be no incentive to harvest illegally taken skins. Once a sincere acquaintance from Guatemala at the last CSG meeting told me that the poor in his country will produce what they are paid to. In fact, these people have little concern with the conservation of anything but the immediate need for their family’s existence. Until theirs and others need for basic quality of life is sustainable no other forms of conservation are relevant.

In closing, there are no quick fixes for any conservation issues facing the world today, especially those things that increase human wealth. But persistence in further education, simplified functionality, responsibility, and accountability, will the conservation and consumptive use of crocodilian and all natural resources become synonymous and sustainable.

It is essential for those in the industry to secure checkpoints in the market insuring legitimacy of the industry and protecting their investment in the legal trade. Furthermore, while maintaining the mission statement of the IUCN/CSG we should always strive to find some common ground to agree on when differences between members arise.
This will insure that our efforts are not destroyed from within. And our strength will be in our diversity and unification.
CROCODILE SKIN INDUSTRY IN ETHIOPIA:
STATUS AND CONSERVATION PROGNOSIS

PHILIP M. HALL, Faculty of Forestry, Alemaya University of Agriculture, P.O. Box 138, Dire Dawa, Ethiopia; and
TADESSE HAILU, Ethiopian Conservation and Wildlife Organization,
P.O. Box 386, Addis Ababa, Ethiopia

Background

The modern crocodile skin industry in Ethiopia dates from 1983 when an agreement was signed by the United Nations Food and Agriculture Organization (FAO) with the Ethiopian Ministry of Agriculture to provide assistance with the development of a commercial venture to ranch Nile crocodiles (Crocodylus niloticus). Construction of a ranch at Arba Minch, located between Lakes Abaya and Chamo in southwestern Ethiopia was begun in mid-1984 and the first wild crocodile stocks were collected in 1985 (Table 1). FAO project input has included capital equipment outlays, external training for veterinary and wildlife staff, and consultant services to evaluate progress. Arba Minch Crocodile Farm (AMCF) is administered by the Ethiopian Wildlife Conservation Organization (EWCO) and was designed to provide a source of foreign exchange through the development of an viable industry that would also

1 Present address: Florida Museum of Natural History - Herpetology,
University of Florida, Gainesville, FL 32611 USA
afford employment for native citizenry and benefit the local economy.

Table 1. Wild crocodile stocks used for Arba Minch Crocodile Farm at Arba Minch, Ethiopia, 1985-1992.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of nests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>identified</td>
<td>4</td>
<td>87</td>
<td>206</td>
<td>132</td>
<td>204</td>
<td>292</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>opened</td>
<td>2</td>
<td>72</td>
<td>126</td>
<td>76</td>
<td>204</td>
<td>225</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>% utilized</td>
<td>50</td>
<td>83</td>
<td>61</td>
<td>58</td>
<td>100</td>
<td>77</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>No. of hatchlings collected</td>
<td>181</td>
<td>2713</td>
<td>2500</td>
<td>2587</td>
<td>6000</td>
<td>7140</td>
<td>2121</td>
<td>0</td>
</tr>
<tr>
<td>1 yr survival rate (%)</td>
<td>50</td>
<td>5</td>
<td>88</td>
<td>87</td>
<td>71</td>
<td>29</td>
<td>--b</td>
<td>0</td>
</tr>
</tbody>
</table>

a - Reduced count due to lack of space on farm.
b - Figure unavailable.

Performance Evaluation

Ethiopia became a signatory to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) in 1989 and a quota system for Ethiopian crocodile products was approved at the 7th and 11th meetings of the Parties (Table 2).
Table 2. Quotas for Ethiopian crocodiles approved by CITES.

<table>
<thead>
<tr>
<th>Year</th>
<th>Ranch skins</th>
<th>Hatchlings live</th>
<th>Hunting trophies</th>
<th>Adults live</th>
<th>Curios from ranching</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>6500</td>
<td>2500</td>
<td>50</td>
<td>20</td>
<td>300</td>
<td>9370</td>
</tr>
<tr>
<td>1991</td>
<td>6000</td>
<td>2500</td>
<td>50</td>
<td>20</td>
<td>300</td>
<td>8870</td>
</tr>
<tr>
<td>1992</td>
<td>4500</td>
<td>2500</td>
<td>50</td>
<td>20</td>
<td>300</td>
<td>7370</td>
</tr>
<tr>
<td>1993</td>
<td>2500</td>
<td>1000</td>
<td>30</td>
<td>0</td>
<td>300</td>
<td>3830</td>
</tr>
<tr>
<td>1994</td>
<td>2000</td>
<td>1000</td>
<td>30</td>
<td>0</td>
<td>300</td>
<td>3330</td>
</tr>
<tr>
<td>1995</td>
<td>4000</td>
<td>1000</td>
<td>30</td>
<td>0</td>
<td>300</td>
<td>5330</td>
</tr>
</tbody>
</table>

A total of 17,000 ranned skins was approved for export during 1990-1992. To date the number of ranned skins produced has fallen far short of that goal. The first harvest at AMCF occurred in 1990 when 2,074 crocodile skins were shipped to Japan. No exports took place in 1991 as a planned harvest was suspended due to the marked drop in international prices for raw salted crocodilian skins. The lack of harvest contributed to a space problem at AMCF and the ranch is now overcrowded. Consequently, hatchling collection was reduced in 1991 and ceased altogether in 1992. The current stock is about 10,000 animals, of which 4,000 three-to-four year old individuals (30-40 cm belly width) are scheduled for harvest.

In terms of husbandry, performance has left much to be desired. Survivorship of hatchling stock (21,121) during 1985-1990 was only 52% at one year of age. Such mortality is unacceptable biologically and economically in a commercial ranching operation. Growth rates of stock at AMCF have been well below that...
demonstrated for crocodilians elsewhere where better husbandry is used. Despite these drawbacks, AMCF has produced a modest profit to date (Table 3), although significant improvement could be realized with better management.

Table 3. Budget summary for Arba Minch Crocodile Farm, 1986-1992 (modified from Allen-Rowlandson, 1991). Prices are in Ethiopian birr (ETB2.05 = US$1.00).

<table>
<thead>
<tr>
<th>Year</th>
<th>Expenses</th>
<th>Income</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986-87</td>
<td>58913.22</td>
<td>0.00</td>
<td>-58913.22</td>
</tr>
<tr>
<td>1987-88</td>
<td>163328.50</td>
<td>0.00</td>
<td>-163328.50</td>
</tr>
<tr>
<td>1988-89</td>
<td>190443.93</td>
<td>0.00</td>
<td>-190443.93</td>
</tr>
<tr>
<td>1989-90</td>
<td>307120.10</td>
<td>983016.00</td>
<td>675895.90</td>
</tr>
<tr>
<td>1990-91</td>
<td>323120.47</td>
<td>0.00</td>
<td>-352775.43</td>
</tr>
<tr>
<td>1991-92</td>
<td>387745.00**</td>
<td>1435000.00**</td>
<td>1047255.00</td>
</tr>
<tr>
<td>Totals</td>
<td>1430671.20</td>
<td>2418016.00</td>
<td>957689.82</td>
</tr>
</tbody>
</table>

** - predicted values.

Nb. - Projected 1992 income assumes sale of 4000 skins at $5.00 cm belly width with an average skin size of 35 cm.

**Future Outlook**

From an economic standpoint, AMCF is at a crossroads. Although administered by EWCO, EWCO is severely constrained in its charge in that it derives no revenues from the management of AMCF. Profits are returned to the central national treasury, thus
depriving EWCO of incentive for sound fiscal, husbandry, or labor management. Funds and manpower from EWCO are sometimes diverted from other areas of responsibility to keep the project operational. AMCF would almost assuredly be better managed by a private concern or corporation that would provide a more predictable operational cash flow and the professional expertise needed to guide labor and commercial husbandry. Such a recommendation in the past might have been contrary to the previous political interests. However, prospects might perhaps be better now for such a conversion since the installation of the Transitional Government of Ethiopia.

In terms of crocodile conservation, AMCF has had a negligible impact. Restocking of hatchlings to the wild has occurred only when space was unavailable to house them within AMCF. Some benefit to crocodile nests against depredation was afforded during previous years when surveys were conducted and nests guarded and monitored for egg collection (Hailu, 1990). However, this practice is now discontinued and no surveys of wild crocodile populations have been made since 1987. Trophy hunting for crocodiles is still of no importance within Ethiopia and will probably remain so for the near future. The monitoring of crocodile curios is problematical at best. While the quota for Ethiopia is very small, the trade in curios (and other wildlife products) remains in the effective hands of the taxidermy industry for which there is no control at present. Protected and endangered wildlife species are regularly sold in Addis Ababa shops having been "certified" as legal by local
taxidermists. This loophole should be closed and certification of wildlife products should be performed by EWCO.

Although the war that deposed the previous regime ended in 1991, much administrative and jurisdictional realignment will continue within Ethiopia for the next several years. This fact, as well as previously existing shortcomings at AMCF, will necessitate close scrutiny of the project by organizations such as the Crocodile Specialist Group for the foreseeable future. The potential for improvement in the management at AMCF is considerable as is that for the management of wild crocodilian stocks in general within Ethiopia.

References


A PRELIMINARY ASSESSMENT OF THE CHANGES IN
EGG PARAMETERS AND LAYING PERFORMANCES
OF INDIVIDUAL CAPTIVE BRED CROCODIUS NILOTICUS
FROM THEIR FIRST LAYING SEASON

By

D.T. HALLER and R.D. HALLER
BACBAB FARM LTD.
P.O.BOX 81995,
MOMBASA, KENYA.

Presented at the 11th Working Meeting of the
Crocodile specialist Group, VICTORIA FALL, ZIMBABWE
2 - 7 AUGUST 1992.
Introduction

A preliminary assessment was made to try to establish the pattern of changes which occur in egg production and hatching success, within a group of *Crocodile niloticus* females, bred and reared under controlled conditions of Baobab Farm (Kenya). The history of these crocodiles is known as they have been monitored since being day old hatchlings. Their individual egg production and hatching success was recorded from their first laying season to present.

Background Baobab Aquaculture

Baobab Farm, located 10 km North of Mombasa on the Kenya Coast, introduced Aquaculture in 1971 as part of an integrated process of land reclamation. The site is a worked out coral limestone quarry of the Bamburi Portland Cement Company. The excavations stopped 50 cm (± 20cm) above the ground water. There is an abundant supply of water which varies in salinity from 0.5-15 ppt according to the dry or wet season and the tidal influence of the nearby Indian Ocean. The ground water has a near-constant temperature of 26 °C (± 1°C) throughout the year (Haller, 1988).

Background of Crocodiles

Crocodiles were introduced into the Integrated Aquaculture System to fill a gap in the Bamburi quarry ecosystem; making use of all animal waste protein from Baobab Farm. The number of crocodiles held is determined by the amount of protein available. Only in this context was crocodile utilisation justifiable from our point of view of wildlife conservation.

Origin of Parent Stock

In October 1975, on a *Tilapia* collection trip to Lake Turkana, five crocodiles, ranging between 32-86 cm in size, were collected for a growth experiment. Their food was waste *Tilapia* and meat from animal carcasses. The growth performance was very encouraging, with an average increase in length of 2.1-2.8 mm per day (Haller, 1976). In 1976 five day old hatchlings from the Tana River were presented to the Farm for rearing, these forming the basis of the present parent stock on the Farm. Their egg production and hatching success was monitored, these trends and some possible explanations are discussed in this preliminary paper. The first eggs (non viable) were laid in 1983, 7 years after hatching.
Original Parent Stock Breeding Pen

The crocodile breeding enclosure covers an area of 1700 m². It consists of two small ponds of 365 m² and 128 m², (Haller, 1988; Haller 1991) respectively, with sand banks. 6 adult female and 1 male crocodile, are used in the breeding enclosure. Of the breeding stock, 5 of females originate from the Tana River (T1/76, T5/76, T6/76, 1T3/76 and T7/76) and 1 female (R8/75) and 1 male (R10/75) originate from Lake Turkana.
RESULTS/DISCUSSION

Age of laying

During 1983, at an age of 7 years, the first 2 captive reared animals (collected in 1975/76) started laying eggs of a mean weight of 46.7g. By 1984 3 females were laying and continued to do so, until in 1988. An additional 2 females started laying, at an age of 12/13 years. Finally by 1989 all 6 females had commenced laying, the last to start laying at an age of 13 years. All females continued to lay every season once they had commenced their breeding cycle.

The data for 1986 is discarded in this paper as the supervision and accuracy of the recording is under question.

The results indicate that captive bred females can start egg laying as early as 7 years old at a length of around 2 m, but the majority only start laying between the ages of 12 to 13 years, with size 2.35m. It has been mentioned earlier that female laying is dependent on length and not necessarily on age. According to the results (Table 3), age seems to be the more prominent factor.

The age of a crocodile is very easily confused, if the exact hatching date is not known. The above females showed growths of 6.6 cm yr⁻¹ after reaching 2 m in around 1983. This would mean that a length difference of 66 cm between animals would correlate to a 10 year difference in growth. These results tend to indicate that it is the age of the female rather than her length which is the determining factor on the quantity of eggs produced.

Number of eggs laid

The mean egg numbers of all the females put together have progressively increased over the last 10 years. In 1983 a total of 11 eggs were laid, while in 1992 it had increased to 199 eggs (Table 2). The first laying in 1983 saw only two females laying, with nests of 5 and 8 eggs (av.6.5), by 1992 with six nests the clutch sizes varied from 27 to 43 eggs, with a mean of 33 eggs per female (Table 3).

The largest female (T1/76) and the last one to start laying at an age of 13 years, remarkably produced the largest clutch numbers from the first laying season (33 eggs in 1989) to the present date (43 eggs 1992). It produced more eggs in the first laying season than the females who had already been laying for 6 years. Does this trend mean that the older the female is before starting to lay, the greater will be the initial clutch sizes? Is egg number dependent on female size? What mechanism triggers the females first laying season? Can they control this? Or is it just genetically determined.

The individual females have all shown increases in egg production with their increase in age. However, some individuals have had drops in their egg production over 2 year periods eg. T6/76 laid 30 eggs in 1989, then the following 2 years the egg production
dropped, producing 23 and 19 eggs respectively, but then increasing again in 1992 to 28 eggs (Table 3). During this same period another female exhibited the same trend. T5/76 produced 29 eggs in 1989, thereafter only producing 28 and 24 eggs respectively, before raising its production to 27 eggs in 1992. T3/76 also showed a similar pattern two years previous. Could this indicate that these females were not in top condition, therefore had a drop in egg production? The interesting factors however are that the suspected slow loss of condition over the two years and then a recovery in the third year, but still not achieving an egg production as high as 4 years previously (Table 3). Could this slow loss of condition be as a result of the slow metabolic rate of the crocodilians at that age? If it does show a loss of condition, this indication could be useful reproduction management tool, to single out weak animals and examine them.

The low egg clutch number in 1988 of 14 eggs by R8/75 was due to the nest being raided by monitor lizard.

**Egg Weights/Egg Lengths/Egg Widths**

In general it is has been seen that there is an increase in egg size with the age of the female.

The first eggs (non viable) were laid in 1983, with mean weights of 46.7 g. The first viable eggs were laid in 1985, by only one female (T3/76) with mean eggs weights of 65.8 g, however the mean egg weights of the three females together that year was considerably lower (56.6 g).

The mean egg weights steadily increased as the females got older, by 1991 the egg weights had reached a mean overall weight of 96.5 g. However, an exception occurred in 1992 where there was a slightly lower overall mean of 96.2 g. A drop in mean egg weight had never occurred previously. Could this drop have been linked with the male being in poor condition? Could the processes of egg formation and development (eg. weight) have been effected by the fertility/or weakening of the male. Is it possible for females to reabsorb the eggs like in some fish?

The farm captive bred females produced heavier mean egg weight than wild females whose eggs were collected along the Galana River in 1992 (Table 2). From the age of 13 years to 16 years the egg weights have increased (from 89.1 to 96.5 g) compared to 88.7 g from the Galana River, (the mean being taken from 442 eggs, 14 nests). The mean clutch sizes however being similar, 33 and 32, in the captive and wild females respectively.

When the total clutch egg biomass of each of the individual female was compared, with the drop in egg numbers exhibited by the above 3 females, the trend seems to conform with the above theory, that the reduction in individual female egg numbers indicated the loss of condition of T5/76, T6/76 and T3/76.

Rejecting the above theory and saying that egg clutch numbers could not be correlated or dependent with female condition, would mean that the expected total egg biomass should have remained the same.
or have increased, for the individual females, with the reduction in egg numbers during this period. This however was not the case. Calculating egg clutch biomass, showed that as the egg numbers decreased during this period, so did the egg biomass. As the egg numbers increase again, so did the egg biomass. A reduction in egg numbers by the individual females does not seem to correlate with an increase of the individual egg sizes.

Only T5/76 showed an increase in egg biomass in 1990 from 1989 with the reduction in eggs. This could be ignored as production only dropped by 1 egg in the following year, but otherwise it follows the same trend as T6/76 and T7/76.

The mean combined egg lengths of the individual females have increased progressively over the last 10 years, starting with mean lengths of 6.8 cm and increasing with millimetre differences yearly to 7.6 cm in 1992. The individual female mean egg lengths have increased overall, but at this stage there is still a great deal of variability in egg lengths from year to year.

The largest individual female mean egg lengths of 8.2cm were obtained in 1988 by R9/75 (Appendix 1), a whole 1 cm larger than the individual mean for that year. This did coincide with an apparently low egg production down from 33 eggs in 1987 to 14 eggs in 1988, however this low egg number cannot be substantiated as the nest had been raided prior to collecting. But the mean egg weights did not seem to be compensated (increase in weight) by this length. Could this imply that the eggs had large air spaces? This requires further investigation.

The mean breadths of all the individual female eggs also showed increases, as the females get older. From 1983 a progressive increase is seen (Appendix 2), with widths of 3.9 to 4.2 to 4.3 to 4.5 and 4.6 cm in 1992. However there are still increases and decreases from year to year as the individual females get older.

Combining the mean nest egg lengths and widths over the years at this stage, it is difficult to see a direct correlation. Even if an index is used combining length, width and weight, a clear pattern is not seen. It would be useful if an index or model could be obtained finally, to estimate the ages of the females in captivity and also in the wild. Although this might not be feasible, it deserves further investigation.

**Hatchling Success**

Young females (aged 7 to 9 years) in their first laying season usually produce a very high percentages of infertile eggs (up to 100%), those being fertile usually died shortly after hatching. Interestingly older females whose first laying season was at a much later (aged 12 to 13; T6/76, T7/76 and T7/76) had very high hatchling survival rates 90, 94 and 100 % respectively (Table 1).

The mean hatchling success of the six females have showed a steady increase from 1985 to 1990, (60 to 82.7 %). There has been a drop in hatching success ever since; in 1991 (72.4 %), to a all time low of 59.8 % in 1992, the large percentage being unfertile (Table 1).
This figure is even lower than when the farm first started obtaining viable eggs in 1985. The 442 eggs collected from the Galana River in 1992 showed a hatching success of 90.5%. Indicating that incubation procedures were satisfactory. The reduction in hatching success could be linked with the poor condition of the male (R10/75) who over the last 2 years has lost considerable physical condition.

It also seems like it from the data (Table 1) that the majority of the hatchling clutches, which are the first to hatch each year (early March) showed the greatest percentage of hatchlings. This again could be linked with the fertility of the male in that the last females to get mated had a poorer chance of having fertile eggs. This point however needs much deeper investigation, as there are one or two exceptions to the above.

The paper mainly discussed and attributed the females low egg numbers and biomass of T5/76 and T6/76 during the dates 1990 and 1991, to a loss of condition of the females. Why then only during their lowest egg numbers, 24 and 19, respectively and there supposed low condition, do both the females have a 100% hatching success? Only 1 other Baobab female has had a 100% hatching success in the 16 years, and that being T1/76 during its first laying season.
# TABLE 1 BAOBAB CROCODILE FARM ORIGINAL PARENT STOCK STATISTICS
SHOWING HATCHING DATES, HATCHING SUCCESS AND STATE OF
UNHATCHED EGGS (WHETHER DEAD IN SHELL, UNFERTILE,
OR ROTTEN/DAMAGED)

<table>
<thead>
<tr>
<th>FEMALE NO</th>
<th>LAYING YEAR</th>
<th>TOTAL EGG LAID</th>
<th>TOT.EGG HATCH DATE</th>
<th>TOTAL HATCHED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1/76</td>
<td>1987</td>
<td></td>
<td>33 01.03.89</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td></td>
<td>34 07.03.90</td>
<td>32</td>
<td>94 2U</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td></td>
<td>38 01.03.91</td>
<td>25</td>
<td>66 3D, 3U, 7R</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td></td>
<td>43 03.03.92</td>
<td>38</td>
<td>88 2D, 3U</td>
</tr>
<tr>
<td>T5/76</td>
<td>1987</td>
<td></td>
<td>14 03.03.88</td>
<td>3</td>
<td>57 1D, 2R</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td>18 15.03.88</td>
<td>10</td>
<td>56 1D, 7R</td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td></td>
<td>29 14.03.88</td>
<td>20</td>
<td>76 8U, 1R</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td></td>
<td>28 26.03.90</td>
<td>22</td>
<td>79 3U, 3R</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td></td>
<td>24 01.03.91</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td></td>
<td>27 06.04.92</td>
<td>16</td>
<td>59 1D, 7U, 3R</td>
</tr>
<tr>
<td>T6/76</td>
<td>1987</td>
<td></td>
<td>29 03.03.88</td>
<td>26</td>
<td>90 3R</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td>30 06.03.89</td>
<td>26</td>
<td>87 4R</td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td></td>
<td>23 07.03.90</td>
<td>20</td>
<td>86 2D, 1R</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td></td>
<td>19 02.03.91</td>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td></td>
<td>28 27.03.92</td>
<td>23</td>
<td>82 1D, 3U, 1R</td>
</tr>
<tr>
<td>T8/75</td>
<td>1987</td>
<td></td>
<td>33 29.02.87</td>
<td>31</td>
<td>94 1D, 1U</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td>14 25.03.89</td>
<td>6</td>
<td>42 5R</td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td></td>
<td>29 26.03.89</td>
<td>20</td>
<td>63 1D, 2U, 6R</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td></td>
<td>29 05.04.90</td>
<td>24</td>
<td>89 3U, 2R</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td></td>
<td>30 12.03.91</td>
<td>15</td>
<td>50 1D, 12U, 2R</td>
</tr>
<tr>
<td>T3/76</td>
<td>1987</td>
<td></td>
<td>31 17.03.87</td>
<td>12</td>
<td>39 9U, 10R</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td>24 15.03.88</td>
<td>18</td>
<td>69 8R</td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td></td>
<td>24 30.03.89</td>
<td>19</td>
<td>70 3U, 2R</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td></td>
<td>29 26.03.90</td>
<td>20</td>
<td>89 2D, 5U, 2R</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td></td>
<td>32 14.03.91</td>
<td>18</td>
<td>50 8D, 1U, 7R</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td></td>
<td>33 09.04.92</td>
<td>20</td>
<td>59 11U, 3R</td>
</tr>
<tr>
<td>T7/76</td>
<td>1987</td>
<td></td>
<td>17 07.03.88</td>
<td>16</td>
<td>94 1k</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td></td>
<td>25 29.03.89</td>
<td>2</td>
<td>f 1D, 5U, 17R</td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td></td>
<td>31 02.04.90</td>
<td>24</td>
<td>77 7U</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td></td>
<td>32 18.03.91</td>
<td>27</td>
<td>87 2D, 2U, 1R</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td></td>
<td>36 19.03.92</td>
<td>13</td>
<td>37 4D, 14U, 5R</td>
</tr>
</tbody>
</table>

* D = Dead in shell  U = Unfertile  R = Rotten/Damaged
## TABLE 2
BAOBAB CROCODILE FARM ORIGINAL PARENT STOCK EGG PRODUCTION
AND HATCHING SUCCESS SUMMARY 1983 - 1992

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nests</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Av. Size</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>26</td>
<td>21</td>
<td>28</td>
<td>22</td>
<td>29</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>Tot. Eggs</td>
<td>13</td>
<td>32</td>
<td>45</td>
<td>26</td>
<td>78</td>
<td>105</td>
<td>170</td>
<td>174</td>
<td>174</td>
<td>199</td>
</tr>
<tr>
<td>Eggs hatched</td>
<td>3</td>
<td>4</td>
<td>27</td>
<td>2</td>
<td>51</td>
<td>73</td>
<td>120</td>
<td>144</td>
<td>126</td>
<td>119</td>
</tr>
<tr>
<td>% Success</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>7.7</td>
<td>65.4</td>
<td>69.5</td>
<td>70.6</td>
<td>82.7</td>
<td>72.4</td>
<td>59.8</td>
</tr>
<tr>
<td>Croc. Nos</td>
<td>All died</td>
<td>All died</td>
<td>10 - 37</td>
<td>All died</td>
<td>903-971</td>
<td>01 - 73</td>
<td>-</td>
<td>Nest No. Nest No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg Wt(g)</td>
<td>46.7</td>
<td>50.8</td>
<td>56.8</td>
<td>55.3</td>
<td>76.3</td>
<td>84.1</td>
<td>89.1</td>
<td>91.6</td>
<td>96.5</td>
<td>98.2</td>
</tr>
<tr>
<td>Egg L(cm)</td>
<td>-</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>7.1</td>
<td>7.2</td>
<td>7.35</td>
<td>7.4</td>
<td>7.5</td>
<td>7.6</td>
</tr>
<tr>
<td>Croc. Wt(g)</td>
<td>33.9</td>
<td>32.9</td>
<td>46.7</td>
<td>50.8</td>
<td>57.3</td>
<td>60.7</td>
<td>56.2</td>
<td>61.7</td>
<td>62.6</td>
<td>62.5</td>
</tr>
<tr>
<td>Croc. L(cm)</td>
<td>23.2</td>
<td>23.7</td>
<td>22.0</td>
<td>22.7</td>
<td>27.0</td>
<td>28.0</td>
<td>29.1</td>
<td>28.5</td>
<td>29.8</td>
<td>29.2</td>
</tr>
</tbody>
</table>

Adapted from Haller (1989)
References


### Appendix I

**Baobab Crocodile Farm Original Parent Stock, Egg Length Statistics 1984 - 1992**

<table>
<thead>
<tr>
<th>Female No</th>
<th>Origin Date</th>
<th>1984</th>
<th>1985</th>
<th>1986</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hatched AV.L</td>
<td>Range SD</td>
<td>AV.L</td>
<td>Range SD</td>
<td>AV.L</td>
</tr>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
</tr>
<tr>
<td>T1/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>6.5</td>
<td>6.3-6.8</td>
<td>6.5</td>
</tr>
<tr>
<td>T5/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>7.2</td>
<td>6.2-7.6</td>
<td>6.6</td>
</tr>
<tr>
<td>T9/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>6.2</td>
<td>5.9-6.5</td>
<td>7.2</td>
</tr>
<tr>
<td>R8/76</td>
<td>TURKANA</td>
<td>1975</td>
<td>6.5</td>
<td>6.3-7.0</td>
<td>0.27</td>
</tr>
<tr>
<td>T3/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>52.5</td>
<td>31.5-58.1</td>
<td>65.8</td>
</tr>
<tr>
<td>T7/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>57.1</td>
<td>33.3-61.5</td>
<td>47.5</td>
</tr>
</tbody>
</table>

**Baobab Crocodile Farm Original Parent Stock, Egg Weight Statistics 1984 - 1992**

<table>
<thead>
<tr>
<th>Female No</th>
<th>Origin Date</th>
<th>1984</th>
<th>1985</th>
<th>1986</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hatched AV.WT.</td>
<td>Range SD</td>
<td>AV.WT.</td>
<td>Range SD</td>
<td>AV.WT.</td>
</tr>
<tr>
<td></td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
</tr>
<tr>
<td>T1/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>42.7</td>
<td>57.2</td>
<td>49.4-61.6</td>
</tr>
<tr>
<td>T5/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>57</td>
<td>43.3-64.3</td>
<td>47.5</td>
</tr>
<tr>
<td>T9/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>52.6</td>
<td>31.4-58.1</td>
<td>65.8</td>
</tr>
<tr>
<td>R8/76</td>
<td>TURKANA</td>
<td>1975</td>
<td>3.8</td>
<td>3.6-4</td>
<td>3.9</td>
</tr>
<tr>
<td>T3/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>3.7</td>
<td>3.5-3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>T7/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>3.7</td>
<td>3.6-4</td>
<td>3.9</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Female No</th>
<th>Origin Date</th>
<th>1984</th>
<th>1985</th>
<th>1986</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hatched AV.BR.</td>
<td>Range SD</td>
<td>AV.BR.</td>
<td>Range SD</td>
<td>AV.BR.</td>
</tr>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
</tr>
<tr>
<td>T1/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>3</td>
<td>3.8</td>
<td>3.6-4.1</td>
</tr>
<tr>
<td>T5/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>3.8</td>
<td>3.6-4</td>
<td>3.9</td>
</tr>
<tr>
<td>T9/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>3.7</td>
<td>3.5-3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>R8/76</td>
<td>TURKANA</td>
<td>1975</td>
<td>3.8</td>
<td>3.6-4</td>
<td>4.1</td>
</tr>
<tr>
<td>T3/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>3.7</td>
<td>3.5-3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>T7/76</td>
<td>TANA R.</td>
<td>1976</td>
<td>3.7</td>
<td>3.6-4</td>
<td>3.9</td>
</tr>
</tbody>
</table>
### APPENDIX II

#### BAOBAB CROCODILE PARENT STOCK, EGG LENGTH STATISTICS 1984 - 1992

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV.L</td>
<td>AV.L</td>
<td>AV.L</td>
<td>AV.L</td>
<td>AV.L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
</tr>
<tr>
<td>T1/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>7.7</td>
<td>7.4</td>
<td>7.1</td>
<td>7.8</td>
<td>7.1</td>
</tr>
<tr>
<td>T5/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>6.5</td>
<td>6.5</td>
<td>7.2</td>
<td>7.5</td>
<td>7.4</td>
</tr>
<tr>
<td>T6/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>7.8</td>
<td>7.2</td>
<td>7.6</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>R0/75 TURKANA</td>
<td>1975</td>
<td></td>
<td>8.2</td>
<td>7.8</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>T1/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>7.1</td>
<td>6.7</td>
<td>7.2</td>
<td>7.7</td>
<td>7.6</td>
</tr>
<tr>
<td>T7/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>6.4</td>
<td>6.2</td>
<td>7.5</td>
<td>7.2</td>
<td>7.5</td>
</tr>
</tbody>
</table>

#### BAOBAB CROCODILE PARENT STOCK, EGG WEIGHT STATISTICS 1984 - 1992

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV.WT.</td>
<td>AV.WT.</td>
<td>AV.WT.</td>
<td>AV.WT.</td>
<td>AV.WT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
</tr>
<tr>
<td>T1/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>85.8</td>
<td>81-90</td>
<td>3.22</td>
<td>90.8</td>
<td>90-100</td>
</tr>
<tr>
<td>T5/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>84.1</td>
<td>72-94</td>
<td>5.65</td>
<td>92.3</td>
<td>90-100</td>
</tr>
<tr>
<td>T6/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>83.6</td>
<td>69-91</td>
<td>1.69</td>
<td>86.3</td>
<td>80-90</td>
</tr>
<tr>
<td>R0/75 TURKANA</td>
<td>1975</td>
<td></td>
<td>89.8</td>
<td>83-93</td>
<td>2.72</td>
<td>90.8</td>
<td>85-90</td>
</tr>
<tr>
<td>T1/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>84.3</td>
<td>78-92</td>
<td>1.49</td>
<td>88.5</td>
<td>82-94</td>
</tr>
<tr>
<td>T7/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>80.1</td>
<td>76-87</td>
<td>2.9</td>
<td>91.5</td>
<td>80-90</td>
</tr>
</tbody>
</table>

#### BAOBAB CROCODILE PARENT STOCK, EGG BREEDTH STATISTICS 1984 - 1992

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV.BR.</td>
<td>AV.BR.</td>
<td>AV.BR.</td>
<td>AV.BR.</td>
<td>AV.BR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
</tr>
<tr>
<td>T1/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>4.1</td>
<td>4.0-4.5</td>
<td>0.12</td>
<td>4.1</td>
<td>4.0-4.2</td>
</tr>
<tr>
<td>T5/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>3.5</td>
<td>2.8-4.2</td>
<td>0.32</td>
<td>4.1</td>
<td>4.0-4.5</td>
</tr>
<tr>
<td>T6/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>4.3</td>
<td>3.4-4.2</td>
<td>0.09</td>
<td>4.2</td>
<td>4.0-4.3</td>
</tr>
<tr>
<td>R0/75 TURKANA</td>
<td>1975</td>
<td></td>
<td>4.1</td>
<td>4.0-4.3</td>
<td>0.09</td>
<td>4.2</td>
<td>3.9-4.5</td>
</tr>
<tr>
<td>T1/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>4.3</td>
<td>3.9-4.5</td>
<td>0.14</td>
<td>4.2</td>
<td>4.0-4.6</td>
</tr>
<tr>
<td>T7/76 TARA R.</td>
<td>1976</td>
<td></td>
<td>3.8</td>
<td>3.5-4.5</td>
<td>0.24</td>
<td>4.3</td>
<td>4.0-4.5</td>
</tr>
</tbody>
</table>
A Report On An Initial Survey Effort to Assess the Status of Black Caiman *Melanosuchus niger* in the Amazon Region of Ecuador

Tommy Hines, Wildlife Consultant
Rt. 3 Box 509
Newberry, Florida 32669

Kenneth G. Rice
Department of Wildlife and Range Sciences
Florida Cooperative Fish and Wildlife Unit
University of Florida
Gainesville, Florida 32611-0490
Background

Melanosuchus niger occurs throughout the Amazon region from the Amazon river mouth in the east to Ecuador in the west (Groombridge 1987). It has apparently been seriously reduced in much of its range by over hunting (Groombridge 1987, King 1989). Small populations of Melanosuchus niger were known to exist in the Amazon region of Ecuador in the 1980's (Plotkin et.al. 1983). They were reported to be common in the lower Rio Aguarico, Rio Yasuni and Rio Lagartococha near the Peruvian border (Groombridge 1982). Asanza, in (Thorbjarnason 1992) reports that populations occur in the Cuyabeno region, Limoncocha and Zancudococha. However, there are very little published survey data and no information on country wide status, nor is there an infrastructure in place to monitor population levels.

M. niger is presently on the CITES Appendix I list of endangered species, and under this classification commerical trade is prohibited. Before the species can be traded internationally a request for a change in the listing to Appendix II (to permit trade) must be presented to the Conference of the Parties of CITES by the Ecuador Management Authority. The request must contain status data as well as proposed management actions.

An initial survey to evaluate the status of the black caiman Melanosuchus niger in the Amazon region of Ecuador was conducted in March, 1992. This survey was funded by Mr Pablo Evans, a businessman interested in ranching black caiman in Ecuador. A proposal submitted to Mr Evans and the government of Ecuador to evaluate the feasibility of ranching black caiman provided the impetus for these surveys. The original proposal contained the following three objectives. 1) To determine the population status and distribution of Melanosuchus niger within the Amazon region of Ecuador. 2) To generate information and recommendations concerning the management of M. niger in the wild, including a long term monitoring system. 3) To provide Mr Pablo Evans with recommendations regarding the feasibility of ranching and/or farming M. niger in Ecuador; the survey we are reporting on is the first step toward achieving objective # 1.

Study areas for the initial survey consisted of lagoons, back waters and disjunct oxbows associated with the Rio Napo (from Coco to Rocafuerte), and the Rio Lagarto Cocha.

Methods

The objective of these surveys was to locate areas of potential caiman habitat, conduct initial population inventories and establish permanent survey routes. Routes were established during daylight hours and general habitat features (eg, surrounding vegetation) were recorded. Samples of significant emergent vegetation were collected for subsequent identification. Beginning and ending points of routes were documented with a Global Positioning System (GPS) and GPS points were recorded around the perimeter of lagoons to map these areas. Erratic elevation readings with the GPS did not allow for dependable water level elevation readings. However, in some cases water depths were measured at known points, and in all cases observations by local residents concerning water levels were recorded.
Other parameters measured included water and air temperatures and general observations concerning rainfall. Surveys were initiated approximately one hour after sunset utilizing either a motorized five m. aluminum boat or three to five m. dugout canoes. Animals were spotted with a 200 000 candlepower light and recorded by 3 m size classes. When species could not be determined, animals were placed into an unknown category by size class. These animals were added to known species counts in the same proportion that the known animals were observed. Additionally, broader size classes were established for those animals which could not be sized accurately.

Even though we had beginning, intermediate and ending points of the majority of the routes our lack of a good map/photograph prevented an exact determination of transect length. But in order to establish an approximate length of each route, we calculated the distance between beginning, intermediate and ending points.

Also, five immature black caiman were captured, measured and released and one adult female black caiman was captured in a Murphy trap, measured, and released. Measurements were also obtained from two animals taken for their abdominal fat, by a local fisherman. Primarily, these animals were measured to verify our size classifications.

In addition, we initiated efforts to acquire LANDSAT photographs of the study area to aid in the assessment of habitat. These have been purchased but have not been received.

Results

During the 13 days of the survey, we inspected lagoons and other caiman habitat along approximately 240 km of the Rio Napo and Rio Lagarto Cocha. We established 12 separate survey routes and conducted at least one night light survey along each route.

Because the variation inherent in night light counts cannot be quantified when only one survey is conducted the data presented here are of limited value. However, we are presently in the process of replicating the counts on a monthly basis to quantify annual variation in numbers of caiman observed. But until those data are analyzed we must rely on the survey results as they are to provide some preliminary insights into population status.

Crocodilians were observed along all 12 survey routes and black caiman were observed in some proportion along every route except one. The variation in the ratio of M. niger to Caiman crocodilus is not readily explainable by obvious habitat differences. But it ranged from .00 to 1.00 of the total number observed being identified as M. niger (Table I).

Of the animals sized, 62% were 1.8 m or smaller, most of which probably represent the sub-adult size class, while 27% fell into the 1.8 to 2.7 m class and 9% were the very large animals (greater than 2.7 m) (Fig. 1). Even though 24 hatchlings were observed the fact we were unable to access areas that appeared to be good production habitat probably caused a significant under-estimate of the proportion of hatchlings in the population.

A significant proportion of the habitats surveyed were surrounded by flooded forest/heavy cover making observability a problem. Also, there were some populations that appeared to be much more wary than others suggesting that human activity may cause behavioral changes which will affect observability.
The numbers of black cainan observed/km ranged from 0 to 14.7 and the number/hr. from 0 to 40.8 (Table II). Actual transect lengths in most cases may be longer than the calculated straight line lengths presented resulting in a slightly elevated density/km. However, comparison of these data with other such surveys in other parts of the world still will put the Ecuador data in perspective. (King et.al. 1990) reported on night light counts of Crocodylus acutus in Honduras and found densities ranging from 0 to 2.3/km. (Wood et.al.1985) analyzed 78 transects in Florida that had been surveyed for alligators Alligator mississippiensis from 1 to 13 years. Eight of the 78 routes (10.2%) had mean densities exceeding 13 animals/km, and 54 transects (69%) had mean densities of less than 5/km.

Conclusion

This survey is a first step toward providing an initial assessment of black cainan status in Ecuador. However, before further progress is made the following needs must be met.

1. Population data that will be published by other researchers should be combined with the data from this project to provide a more complete picture of status.

2. In order to interpret the night light data thus far gathered, the effects of annual variation in water levels and other environmental factors on counts must be addressed. We have provided some short term training for one Ecuadorian biologist and the initial 12 surveys are presently being replicated on a monthly basis.

3. We observed viable populations of black cainan. However, the quantity of habitat available in the Amazon region of Ecuador is unknown; we believe LANDSAT imagery will allow us to identify and quantify cainan habitat throughout the region.

4. Other river systems exist in the region, particularly the extensive area south of the Rio Napo. Asanza (pers. comm.) reports black cainan in this area. Before we can establish a basis for countrywide assessment of the status of black cainan, systematic survey data should be obtained from these unsurveyed areas.

A long-term biologically sound crocodilian management program in Ecuador will require a continued research effort to establish the necessary database. In addition to the previously mentioned projects, immediate priorities should include research dealing with (1) reproductive cycle of cainan (2) mortality and growth (3) continuing efforts to improve population monitoring and (4) interspecific competition between Melanosuchus niger and Caiman crocodylus.

Simultaneous with the field research, systematic investigation into the practical aspects of captive rearing of black cainan should begin.

This should also include identifying the role that indigenous people may play in the program and developing a plan where, if a ranching program is feasible, the conservation benefits will be maximized.